ANAT3131
FUNCTIONAL ANATOMY OF THE HEAD, NECK AND BACK

Course Outline
Term 2, 2022

School of Medical Sciences
Faculty of Medicine & Health
Table of Contents

1. Staff 3
2. Course information 3
2.1 Course summary 3
2.2 Course aims 3
2.3 Course learning outcomes (CLO) 3
2.4 Relationship between course and program learning outcomes and assessments 4
3. Strategies and approaches to learning 4
3.1 Learning and teaching activities 4
3.2 Expectations of students 5
4. Course schedule and structure 6
5. Assessment 8
5.1 Assessment tasks 8
5.2 Assessment criteria and standards 9
5.3 Submission of assessment tasks 10
6. Academic integrity, referencing and plagiarism 11
7. Readings and resources 12
8. Administrative matters 13
8.1 General Information 13
8.2 Communication 13
8.3 Grievance Resolution Officer 13
8.4 Student Representatives 13
9. Additional support for students 14
10. Student Risk Assessment 15
11. Ethical behaviour and human remains 19
1. Staff

<table>
<thead>
<tr>
<th>Position</th>
<th>Name</th>
<th>Email</th>
<th>Consultation times and locations</th>
<th>Contact Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Convenor</td>
<td>Ms Anneliese Hume</td>
<td>a.hulme@unsw.edu.au</td>
<td>Please arrange via email</td>
<td>Room 208, Level 2</td>
</tr>
<tr>
<td>Co-convenor</td>
<td>Dr Rachel Berry</td>
<td>r.berry@unsw.edu.au</td>
<td></td>
<td>Wallace Wurth (C27)</td>
</tr>
</tbody>
</table>

A full list of academic staff supporting your learning in this course is available in the course Moodle site. Appointments and consultation with academic staff should be arranged via email. The course email address is headandneckanatomy@unsw.edu.au

Please email from your official UNSW student account, include your student number, course code and state the reason for your email clearly. Except for questions of private/personal context, all questions/queries preferably should be posted in Teams.

2. Course information

Units of credit: 6 Units of Credit

Pre-requisite(s): A pass in ANAT2111 or ANAT1521 or ANAT2511

Teaching times and locations are available on http://timetable.unsw.edu.au/2022/ANAT3131.html and on the course Moodle page.

2.1 Course summary

You will gain an understanding of functional and clinically-relevant anatomy of the head, neck and back regions of the human body. You will develop comprehensive knowledge of head and neck region of the human body, including its musculoskeletal, viscera and neurovasculature components. The learning activities in this course aim to develop thorough understanding of the normal anatomy that can be applied to clinically-relevant scenarios and medical imaging using problem-solving skills.

2.2 Course aims

To develop comprehensive knowledge of head and neck region of the human body, including its musculoskeletal, viscera and neurovascular components. The learning activities in this course aim to develop thorough understanding of the normal anatomy that can be applied to clinically relevant scenarios and medical imaging using problem-solving skills.

2.3 Course learning outcomes (CLO)

On successful completion of this course you will be able to:

1. Demonstrate a thorough knowledge of the functional anatomy of the head, neck and back, including the musculoskeletal framework, viscera, and neurovasculature and lymphatics.
2. Identify the anatomy underpinning clinical and functional presentations related to the head, neck and back.
3. Correlate normal anatomy with clinical imaging and cross-sectional anatomy.
2.4 Relationship between course and program learning outcomes and assessments

| Course Learning Outcome (CLO) | LO Statement | Related Tasks & Assessment |
|-------------------------------|---|
| CLO 1 | Demonstrate a thorough knowledge of the functional anatomy of the head, neck and back, including the musculoskeletal framework, viscera, and neurovasculature and lymphatics. | • Individual Quizzes
| | • Spot Tests
| | • Team assessment
| | • Final Theory Examination |
| CLO 2 | Identify the anatomy underpinning clinical and functional presentations related to the head, neck and back. | • Individual Quizzes
| | • Spot Tests
| | • Team assessment
| | • Final Theory Examination |
| CLO 3 | Correlate normal anatomy with clinical imaging and cross-sectional anatomy. | • Individual Quizzes
| | • Spot Tests
| | • Team assessment
| | • Final Theory Examination |

3. Strategies and approaches to learning

3.1 Learning and teaching activities

Student learning and engagement with the content of the course underpins all learning activities.

Seminars

These focus on major concepts and ‘difficult’ topics in the anatomy of the head and neck such as an arrangement of structures, innervation and function, functional anatomy of cranial nerves. Seminars are used to present major concepts, in particular the content that might be challenging, within a given time on specific topics throughout the course. They provide a preliminary overview of the region that is being studied and focus on:

• arrangement and anatomy of the structures in the head and neck;
• arrangement of the musculoskeletal elements that underpins the movement of the joints in the head, neck and vertebral column;
• functional anatomy of the cranial nerves;
• aspects relevant to clinical situations as well as surface and radiological anatomy.

It is advisable that students attend all seminars to achieve better learning outcomes and academic success. All seminars will be streamed live (with a few exceptions to accommodate for public holidays) and recorded and posted on ECHO360. It should be noted that while it is expected that the seminars will be recorded, please note that this cannot be guaranteed as we may encounter technical issues.

In some cases, there is pre-class work (some of which is online) to assist in preparation for tutorials or labs, and/or post-class work to help consolidate content covered.
Laboratory/Practical classes
The laboratory classes complement the seminars, and involve active learning in a small group situation. There is much research to indicate that this is the best method for the learning of anatomy and these sessions will give you a window into the wonder of the human body. In laboratory sessions, you will be required to study human bones, models, wet and plastinated prosected specimens as well as cross-sectional and radiological imaging. Every student is required to be involved in inquiry and take an active participation in the learning process.

It is strongly advised that students come well prepared in order to make the best use of their time in the laboratory. Each lab session links to content covered in preceding seminars and videos.

Tutorial sessions
The tutorials amalgamate the theoretical and practical components of the weeks content and provide correlation with applications such as clinical and functional cases, and medical imaging. Tutorials provide an informal engaging team-based learning environment. Sessions are structured to encourage student participation in activities and discussions designed to enhance learning while working in teams and individually applying a problem-based approach. The students will benefit most with some preparation prior to attending the session. The focus of the tutorials in this course will be to apply the principles of functional and clinical anatomy of head, neck and back.

Independent study
It facilitates achievement of the learning outcomes for the course by developing further the concepts covered in face-to-face sessions. Additional reading beyond the lecture materials is encouraged for efficient learning. Relevant additional resources, including textbook chapters, videos, research articles and case reports will be cited and/or provided in Moodle and will be discussed in online forums, virtual anatomy adaptive tutorials and formative self-assessment tasks, will be provided to encourage understanding and deep learning. You are encouraged to use the online discussion forums for questions and discussion related to the course content. Please engage in this discussion by answering and commenting on questions and queries from your peers. Teaching staff will respond to unanswered questions in this forum.

3.2 Expectations of students
You are reminded that UNSW recommends that a 6 units-of-credit course should involve about 150 hours of study and learning activities. The formal learning activities total approximately 70 hours throughout the term and students are expected (and strongly recommended) to do at least the same number of hours of additional study.

Attendance is important and highly encouraged for satisfactory completion of the course and achieving the learning outcomes. It is expected that a student attends at least 80% of all practical and laboratory classes. Attendance of the laboratory classes and tutorials will be recorded at the start of each class. If absent from a laboratory/tutorial component, students are encourage to notify the course convenors as soon as possible. When missing an assessment item, students are required to submit an online application via myUNSW for special consideration and provide evidence of the cause of absence such as medical certificates or other documentation.

The course utilises social learning platforms such as Microsoft Teams. It is expected that you will engage with these platforms in a respectful and professional manner and use your cameras in online practical settings. If you have any concerns about this, please contact the convenor as soon as possible.
Team-based assessments will involve working in small groups inside and outside of class, which will be facilitated via in-person and online activities, including social networks and discussion forums. In order to pass the course, every item of assessment must be attempted.

4. Course schedule and structure

Update below a sample table of weekly class topics or themes, with activities and assessment tasks. This course consists of 70 hours of teaching contact. You are expected to take an additional 70 hours of non-class contact hours to complete assessments, readings, and exam preparation.

1. **Seminars** – Mondays 10:00 AM – 12:00 PM. These will be delivered via MS Teams and will be recorded.

2. **Preparatory activities** – activities available via Moodle and should be completed prior to attending labs each week. Please note that there are online activities that need to be completed before the first tutorial.

3. **Laboratory practicals** – students will attend in-person labs. Friday 10:00 AM – 1:00 PM. Students will work through the lab manual in small groups.

4. **Tutorials** – students will attend in person tutorials. Fridays 2:00 PM – 4:00 PM. Students will work in small groups to address scenario case questions and submit their work for assessment.

5. **Exam timeslot (for practical test 1)** – Friday 10:00 AM – 1:00 PM in week 5

The full schedule is included below. **Any changes to the timetable will be communicated via the course Moodle and Teams.**

Please note that the course integrates the use of Moodle and MS Teams. **It is suggested that you download the MS Teams app available via UNSW IT before the course commences.**

While it is expected that the seminars will be recorded please note that this cannot be guaranteed. **It is strongly recommended that students attend all seminars as they form the basis for the practical content for the week, and the continuous assessment.**
ANAT3131 course schedule and structure:

<table>
<thead>
<tr>
<th>Week</th>
<th>Dates</th>
<th>Seminar Monday 10am -12noon</th>
<th>Labouratory/Practicals Friday 10am-1pm</th>
<th>Tutorial Friday 2pm-4pm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>23/05-29/05</td>
<td>Compulsory anatomy orientation online module</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>30/05-05/06</td>
<td>Skull & Face Introduction to Cranial Nerves</td>
<td>Skull & Face</td>
<td>Tutorial teams Skull & Face</td>
</tr>
<tr>
<td>2</td>
<td>06/06-12/06</td>
<td>Mastication</td>
<td>Mastication Quiz: Skull & Face</td>
<td>Introduction to Cranial Nerves</td>
</tr>
<tr>
<td>3</td>
<td>13/06-19/06</td>
<td>Oral Region (Public Holiday - Pre recorded)</td>
<td>Oral Region Quiz: Mastication</td>
<td>Mastication</td>
</tr>
<tr>
<td>4</td>
<td>20/06-26/06</td>
<td>Orbital Region</td>
<td>Orbital Region Quiz: Oral Region</td>
<td>Oral Region</td>
</tr>
<tr>
<td>5</td>
<td>27/06-03/07</td>
<td>Revision</td>
<td>Practical Test 1</td>
<td>Orbital Region</td>
</tr>
<tr>
<td>6</td>
<td>04/07-10/07</td>
<td>Flexiweek: start on Week 7 Self-directed activities</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>11/07-17/07</td>
<td>Nose & Ear Quiz: Orbital Region Feedback – Practical Test 1</td>
<td>Nose & ear</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>18/07-24/07</td>
<td>Pharynx & Larynx Quiz: Nose & Ear</td>
<td>Pharynx & larynx</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>25/07-31/07</td>
<td>Back Quiz: Pharynx & Larynx</td>
<td>Back</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>01/08-07/08</td>
<td>Neck Quiz: Back & Neck</td>
<td>Neck & Revision</td>
<td>Neck & Revision</td>
</tr>
<tr>
<td></td>
<td>08/08-12/08</td>
<td>Study period</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12/08-27/08</td>
<td>Exam period Final Theory Examination and Practical Test 2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exam Period: 12 August – 25 August
Supplementary Exam Period: 7 September – 11 September
5. Assessment

5.1 Assessment tasks

<table>
<thead>
<tr>
<th>Assessment task</th>
<th>Length</th>
<th>Weight</th>
<th>Mark</th>
<th>Due date and time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assessment 1: Individual Quizzes (7 in total)</td>
<td>5 minutes each</td>
<td>10</td>
<td>10 each</td>
<td>As indicated in schedule</td>
</tr>
<tr>
<td>The six best quiz marks contribute to the final course mark.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Individual quizzes will be held at the start of practical classes in weeks 2-4 and 8-10. The individual quizzes are based on the related learning activities and aim to encourage you to self-manage your mastery of the CLOs. These assessments usually include multiple choice questions (MCQs).

You will receive weekly automated feedback. Individual feedback can be sought during practical sessions from tutors.

Assessment 2: Spot Tests

<table>
<thead>
<tr>
<th>Practical Test</th>
<th>Length</th>
<th>Weight</th>
<th>Mark</th>
<th>Due date and time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Practical Test 1</td>
<td>45</td>
<td>15</td>
<td>100</td>
<td>Week 5</td>
</tr>
<tr>
<td>Practical Test 2</td>
<td>45</td>
<td>15</td>
<td>100</td>
<td>TBA Exam period</td>
</tr>
</tbody>
</table>

Two practical tests (mid-term and end-term, each equal to 15%) are based on the laboratory component and assess the ability to correctly identify anatomical structures on cadaveric specimens, models, medical images and cross-sections as well as to answer a few relevant short theory questions.

They are aligned with course aims 1-3.

Performance outcomes as well as generalised cohort feedback regarding assessment items will be provided once the marks are finalised and reported.

Assessment 3: Team Assessment

<table>
<thead>
<tr>
<th>Assessment</th>
<th>Length</th>
<th>Weight</th>
<th>Mark</th>
<th>Due date and time</th>
</tr>
</thead>
<tbody>
<tr>
<td>N/A</td>
<td>25</td>
<td>100</td>
<td>TBA via Moodle</td>
<td></td>
</tr>
</tbody>
</table>

Students work in small teams researching allocated topics and applying their knowledge to solve problems presented in tutorials. Teams will be assessed on disciplinary knowledge by their instructor and peers.

Team assessment is based on the course aims 1-3.

The 25% will be broken into two components:

- 20% - accumulative marks each team will receive from their submissions each tutorial (the best seven marks will contribute to the final 20%)
- 5% - individual marks based on peer assessment

Team assessment is based on the course aims 1-3.

Generalised cohort feedback will be given in the tutorial after each submission. Formative peer feedback will be given in week 5.

Assessment 4: Final Theory Examination

<table>
<thead>
<tr>
<th>Assessment</th>
<th>Length</th>
<th>Weight</th>
<th>Mark</th>
<th>Due date and time</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final Theory Examination</td>
<td>120 minutes</td>
<td>35</td>
<td>100</td>
<td>Exam Period</td>
</tr>
</tbody>
</table>

This is a two-hour comprehensive assessment covering the entire course content.
Individual performance outcome will serve as feedback. General cohort feedback is provided via the course learning management system.

Further information
UNSW grading system: https://student.unsw.edu.au/grades

5.2 Assessment criteria and standards

<table>
<thead>
<tr>
<th>Assessment of Attributes</th>
<th>Developing</th>
<th>Functional</th>
<th>Proficient</th>
<th>Advanced</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assessment 1:</td>
<td>Limited understanding of required knowledge and concepts. Inaccurate understanding of concepts discussed in lectures and laboratory sessions</td>
<td>Can reproduce significant facts and definitions. Has adequate breadth, but limited depth of understanding</td>
<td>Exhibits breadth and depth of understanding of concepts in the knowledge domain. Able to apply concepts to new contexts</td>
<td>Exhibits accurate and elaborate breadth and depth of understanding of concepts in the knowledge domain. Can apply concepts well to clinical scenarios.</td>
</tr>
<tr>
<td>Assessment 2:</td>
<td>Inaccurate understanding and explanation of concepts discussed in course. Cannot identify features in new contexts.</td>
<td>Can reproduce accurately required facts and definitions. Has adequate breadth, but limited depth of application of practical concepts.</td>
<td>Exhibits breadth and depth of understanding of practical concepts. Can use terminology accurately in new contexts.</td>
<td>Exhibits accurate and elaborated breadth and depth of understanding of concepts in the knowledge domain. Can apply concepts well to clinical scenarios.</td>
</tr>
<tr>
<td>Assessment 3:</td>
<td>Inaccurate understanding and explanation of concepts discussed in course. Cannot identify</td>
<td>Can reproduce accurately required facts and definitions. Has adequate breadth, but limited depth of application of practical concepts.</td>
<td>Exhibits breadth and depth of understanding of practical concepts. Can use terminology accurately in new contexts.</td>
<td>Exhibits accurate and elaborated breadth and depth of understanding of concepts in the knowledge domain. Can apply concepts well to clinical scenarios.</td>
</tr>
<tr>
<td>Assessment 4: Final Theory Examination</td>
<td>Limited understanding of required knowledge and concepts. Inaccurate understanding and explanation of concepts discussed in lectures and laboratory sessions;</td>
<td>Can reproduce accurately required facts and definitions. Has adequate breadth, but limited depth of understanding of concepts as evidenced in integrating body systems.</td>
<td>Exhibits breadth and depth of understanding of concepts in the knowledge domain. Can use terminology accurately in new contexts and can discuss concepts appropriately.</td>
<td>Exhibits accurate and elaborated breadth and depth of understanding of concepts in the knowledge domain. Can apply concepts well. Can justify application of concepts based on anatomical and functional principles, and integration of body systems.</td>
</tr>
</tbody>
</table>

5.3 Submission of assessment tasks

Late Submission

Late submissions will be penalized at 5% per day capped at five days (120 hours). Students will not be permitted to submit their assessments after this date.

Special Consideration

If you experience a short-term event beyond your control (exceptional circumstances) that impacts your performance in a particular assessment task, you can apply for Special Considerations.

You must apply for Special Consideration **before** the start of your exam or due date for your assessment, except where your circumstances of illness or misadventure stop you from doing so.

If your circumstances stop you from applying before your exam or assessment due date, you must **apply within 3 working days** of the assessment, or the period covered by your supporting documentation.

More information can be found on the [Special Consideration website](#).
6. Academic integrity, referencing and plagiarism

Referencing is a way of acknowledging the sources of information that you use to research your assignments. You need to provide a reference whenever you draw on someone else's words, ideas or research. Not referencing other people's work can constitute plagiarism.

Please use a consistent referencing style for this course if needed.

Further information about referencing styles can be located at https://student.unsw.edu.au/referencing

Academic integrity is fundamental to success at university. Academic integrity can be defined as a commitment to six fundamental values in academic pursuits: honesty, trust, fairness, respect, responsibility, and courage. At UNSW, this means that your work must be your own, and others' ideas should be appropriately acknowledged. If you don't follow these rules, plagiarism may be detected in your work.

Further information about academic integrity and plagiarism can be located at:

- The Current Students site https://student.unsw.edu.au/plagiarism, and
- The ELISE training site http://subjectguides.library.unsw.edu.au/elise/presenting

The Conduct and Integrity Unit provides further resources to assist you to understand your conduct obligations as a student: https://student.unsw.edu.au/conduct.

The School of Medical Sciences will not tolerate plagiarism in submitted written work. The University regards this as academic misconduct and imposes severe penalties. Evidence of plagiarism in submitted assignments, etc. will be thoroughly investigated and may be penalised by the award of a score of zero for the assessable work. Flagrant plagiarism will be directly referred to the Division of the Registrar for disciplinary action under UNSW rules.

Plagiarism at UNSW is defined as using the words or ideas of others and passing them off as your own. Examples include:

| Copying | Using the same or remarkably similar words to the original text or idea without acknowledging the source or using quotation marks. This includes copying materials, ideas or concepts from a book, article, report or other written document, presentation, composition, artwork, design, drawing, circuitry, computer program or software, website, internet, other electronic resource, or another person's assignment, without appropriate acknowledgement. |
| Inappropriate paraphrasing | Changing a few words and phrases while mostly retaining the original structure and/or progression of ideas of the original, and information without acknowledgement. |

Collusion

This also applies in presentations where someone paraphrases another’s ideas or words without credit and to piecing together quotes and paraphrases into a new whole, without appropriate referencing.

Presenting work as independent work when it has been produced in whole or part in collusion with other people. Collusion includes:

- students providing their work to another student before the due date, or for the purpose of them plagiarising at any time
- paying another person to perform an academic task and passing it off as your own
- stealing or acquiring another person’s academic work and copying it
- offering to complete another person’s work or seeking payment for completing academic work.

This should not be confused with academic collaboration.

Inappropriate citation

Citing sources which have not been read, without acknowledging the ‘secondary’ source from which knowledge of them has been obtained.

Self-plagiarism

’Self-plagiarism’ occurs where an author republishes their own previously written work and presents it as new findings without referencing the earlier work, either in its entirety or partially.

Self-plagiarism is also referred to as ‘recycling’, ‘duplication’, or ‘multiple submissions of research findings' without disclosure. In the student context, self-plagiarism includes re-using parts of, or all of, a body of work that has already been submitted for assessment without proper citation.

Students are reminded of their Rights and Responsibilities in respect of plagiarism, as set out in the University Undergraduate and Postgraduate Handbooks and are encouraged to seek advice from

7. Readings and resources

Software	Acland’s Video Atlas of Human Anatomy (aclandanatomy.com) by Wolters Kluwer, Lippincott Williams & Wilkins) free access is available via UNSW Library				
Study Spaces	Library can be used for on-campus studies	Anatomy museum (ground floor of Wallace Wurth East; swipe card entry) provides specimens, Anatomy software and Internet access	Wallace Wurth East G06/G07 (swipe card entry) computers with a variety of anatomical software including Virtual Adaptive Anatomy Tutorials	Museum of Human Disease	medicalsciences.med.unsw.edu.au/students/disciplines/anatomy
Moodle	Information about the course and a number of electronic study resources can be accessed via the UNSW Moodle learning management system. You can also				
access the system via MYUNSW. Support materials are located at student.unsw.edu.au/moodle-support. Lecture notes, access to your grades, course documents and learning activities can be found on Moodle. Communication with the tutors and your groups and teams can also be done there.

<table>
<thead>
<tr>
<th>Library</th>
<th>library.unsw.edu.au</th>
<th>The Library has a collection of anatomical models available for studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture Recordings+</td>
<td>Lecture Recordings+ provides digital audio-visual recordings of lectures that can be accessed via streaming media over the web or as a podcast. Links are provided via Moodle.</td>
<td></td>
</tr>
<tr>
<td>Additional materials</td>
<td>medicalsciences.med.unsw.edu.au/students/undergraduate/learning-resources</td>
<td></td>
</tr>
<tr>
<td>Equipment Required</td>
<td>Laboratory coat, enclosed shoes, facemask and safety glasses are required to be worn in the lab. Personal electronic devices.</td>
<td></td>
</tr>
</tbody>
</table>

8. Administrative matters

Student enquiries should be submitted via student portal https://portal.insight.unsw.edu.au/web-forms/or via the course email address headandneckanatomy@unsw.edu.au

8.1 General Information

The Department of Anatomy is part of the School of Medical Sciences and is within the Faculty of Medicine & Health. **Professor Nalini Pather** is the Head of Anatomy and appointments to see her may be made through email (N.Pather@unsw.edu.au).

8.2 Communication

All students are advised that email is the official means by which the School of Medical Sciences at UNSW will communicate with you. All email messages will be sent to your official UNSW email address (e.g. z1234567@unsw.edu.au) and, if you do not wish to use the University email system, you MUST arrange for your official mail to be forwarded to your chosen address. Email correspondence with the University should be from your UNSW email address to reduce identity confusion.

The University recommends that you check your mail at least every other day. Facilities for checking email are available in the School of Medical Sciences and in the University library. Further information and assistance are available from the IT Service Centre (02) 9385 1333.

All current timetables, notices, and information relevant to you will be available on Moodle. It is your responsibility to check Moodle regularly.

8.3 Grievance Resolution Officer

In case you have any problems or grievance about the course, you should try to resolve it with the Course Convenors. If the grievance cannot be resolved in this way, you should contact the School of Medical Sciences Grievance Officer, Prof Nick Di Girolamo (n.digirolamo@unsw.edu.au).

8.4 Student Representatives

Two student representatives from each cohort represent the students in this course on the Department Student-Staff Liaison Committee. These representatives are expected to liaise with course conveners and student cohort, and to meet department committees as required; usually 2 times per term. During these meetings representatives will have the opportunity to report on any feedback relating to the course that has been gathered from peers either verbally or via email. Being a student representative gives you
the opportunity to provide a voice for your student cohort, demonstrate your leadership, and is a role that can be listed on your CV.

9. Additional support for students

- The Current Students Gateway: https://student.unsw.edu.au/
- Academic Skills and Support: https://student.unsw.edu.au/academic-skills
- Student Wellbeing and Health: https://www.student.unsw.edu.au/wellbeing
- UNSW IT Service Centre: https://www.myit.unsw.edu.au/services/students
- UNSW Student Life Hub: https://student.unsw.edu.au/hub#main-content
- Student Support and Development: https://student.unsw.edu.au/support
- IT, eLearning and Apps: https://student.unsw.edu.au/elearning
- Student Support and Success Advisors: https://student.unsw.edu.au/advisors
- Equitable Learning Services (Formerly Disability Support Unit): https://student.unsw.edu.au/els
- Transitioning to Online Learning: https://www.covid19studyonline.unsw.edu.au/
- Guide to Online Study: https://student.unsw.edu.au/online-study
10. Student Risk Assessment

<table>
<thead>
<tr>
<th>Medicine and Science Teaching Laboratory</th>
<th>Practical Classes (Dry and Computer) for Medicine and Science Students</th>
</tr>
</thead>
<tbody>
<tr>
<td>Student Risk Assessment</td>
<td>C27 Wallace Wurth Building G06/07</td>
</tr>
<tr>
<td></td>
<td>D26 Ian Jacobs Building, Lab 08B</td>
</tr>
</tbody>
</table>

Hazards

<table>
<thead>
<tr>
<th>Ergonomics</th>
<th>Musculoskeletal pain</th>
<th>• Correct workstation set-up</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electrical</td>
<td>Electrical shock/Fire</td>
<td>• Check electrical equipment is in good condition before use</td>
</tr>
<tr>
<td>Biological</td>
<td>Infection</td>
<td>• All portable electrical equipment tested and tagged</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Disinfectants and wipes available for use before and after the practical</td>
</tr>
</tbody>
</table>

Workstation set-up

![Workstation set-up diagram](image)

- Top of monitor at eye-height
- Monitor arm-distance away
- Elbow at 90° angle
- Monitor tilt
- Adjust seat back for lumbar support

Personal Protective Equipment

Face masks may be required. Please following the instructions provided at the time of entry.

Emergency Procedures

In the event of an alarm, follow the instructions of the academic in charge. The initial sound (beep) is advising you to prepare for evacuation. During this time pack up your personal belongings. The second sound (whoop) gives instruction to leave. The assembly point is on the lawn in front of the Chancellery. In the event of an injury inform the academic in charge (and/or lab staff). First aider and fire warden contact details are on display by the lifts on the floor and in each room. There is a wall mounted First Aid Kit located at the end of the G06 or 08A Laboratory.
Clean up and waste disposal

No apparatus or chemicals used in these rooms.

Declaration

I have read and understand the safety requirements for this practical class, and I will observe these requirements.

Signature: …………………………………………………...
Date: ……………………………

Student number: ……………………………………………...
Hazards

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Risks</th>
<th>Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Formaldehyde</td>
<td>Corrosive</td>
<td>• Low concentrations of chemicals used</td>
</tr>
<tr>
<td>Methylated spirits</td>
<td>Flammable</td>
<td>• Adequate air changes and ventilation are provided</td>
</tr>
<tr>
<td>2-phenoxylethanol</td>
<td>Irritant</td>
<td>• Safety Data Sheets for chemicals available</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Physical</th>
<th>Risks</th>
<th>Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cold temperature</td>
<td>Cold</td>
<td>• Ensure appropriate immunisation is current</td>
</tr>
<tr>
<td>Heavy and sharp models (e.g. bone/plastic)</td>
<td>Penetrating wound</td>
<td>• Always wear a laboratory coat</td>
</tr>
<tr>
<td></td>
<td>Foot injury</td>
<td>• Always wear enclosed shoes with full coverage of the dorsum of the foot</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Wear protective eyewear or glasses</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Biological</th>
<th>Risks</th>
<th>Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fungi</td>
<td></td>
<td>• Wear a face mask (if required)</td>
</tr>
<tr>
<td>Bacteria (tetanus)</td>
<td></td>
<td>• Wear disposable gloves when handling wet specimens and do not cross-contaminate models or bones with wet specimens</td>
</tr>
<tr>
<td>Hepatitis B and C</td>
<td></td>
<td>• Do handle food or drinks</td>
</tr>
<tr>
<td></td>
<td>Infection</td>
<td>• Do not place anything into your mouth</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Use disinfectant provided for cleaning models and surfaces</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Use the provided hand sanitisers regularly</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Wash hands with soap and dry thoroughly before leaving</td>
</tr>
</tbody>
</table>

Personal Protective Equipment required

- Lab. Coat
- Closed in footwear
- Safety Glasses
- Gloves
- Mask

Emergency Procedures

In the event of an alarm, follow the instructions of the academic in charge. The initial sound (beep) is advising you to prepare for evacuation. During this time pack up your personal belongings. The second sound (whoop) gives instruction to leave. The assembly point is on the lawn in front of the Chancellery. In the event of an injury inform the academic in charge (and/or lab staff). First aider and fire warden contact details are on display by the lifts on the floor and in each room. There is a wall mounted First Aid Kit located at the end of the G06 or 08A Laboratory.

Clean up and waste disposal

- Cover wet specimens with the towels provided. Make sure that towels do not hang over the edge of the table as this may result in fluid dripping onto the floor. Fluids on the floor are a major safety hazard and should be reported to staff immediately.
- Replace stools under the tables (if applicable).
- Remove your gloves and dispose in the biowaste bins provided.
- Wash your hands thoroughly with the soap provided.
- Remove your laboratory coat as you leave the room.

Ethics Approval

This type of practical has been previously considered and approved by the UNSW Human Research Ethics Advisory Panel (HC180115).

Declaration

I have read and understand the safety requirements for this practical class, and I will observe these requirements.

Signature: .. Date: ...

Student number: ..
Medicine Teaching Laboratory
Student Risk Assessment

Surgical Skill Suite for Medical and Science Students
Wallace Wurth LG 44

<table>
<thead>
<tr>
<th>Hazards</th>
<th>Risks</th>
<th>Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Formaldehyde</td>
<td>Corrosive</td>
<td>• Low concentrations of chemicals used</td>
</tr>
<tr>
<td>Methylated spirits</td>
<td>Flammable</td>
<td>• Adequate air changes and ventilation are provided</td>
</tr>
<tr>
<td>2-phenoxethanol</td>
<td>Irritant</td>
<td>• Safety Data Sheets for chemicals available</td>
</tr>
<tr>
<td>Physical</td>
<td>Cold temperature</td>
<td>• Wear warm clothing as required</td>
</tr>
<tr>
<td></td>
<td>Heavy and sharp models</td>
<td>• Always wear a laboratory coat</td>
</tr>
<tr>
<td></td>
<td>(e.g. bone/plastic)</td>
<td>• Wear long-sleeved surgical gown when working with fresh tissue and embalming</td>
</tr>
<tr>
<td>Biological</td>
<td>Cold</td>
<td>• Always wear enclosed shoes with full coverage of the dorsum of the foot</td>
</tr>
<tr>
<td>Fungi</td>
<td>Penetrating wound</td>
<td>• Wear protective eyewear</td>
</tr>
<tr>
<td>Bacteria (tetanus)</td>
<td>Foot injury</td>
<td>• Use QlickSmart blade removal unit to remove scalpel blades</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Ensure appropriate immunisation is current</td>
</tr>
<tr>
<td></td>
<td>Infection</td>
<td>• Wear a face mask (if required)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Wear disposable gloves when handling wet specimens and do not cross-contaminate models or bones with wet specimens</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Do bring in any food or drinks</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Do not place anything into your mouth (e.g. pen)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Use disinfectant provided for cleaning models and surfaces</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Use the provided hand sanitisers regularly</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Wash hands with soap and dry thoroughly before leaving</td>
</tr>
</tbody>
</table>

Personal Protective Equipment required

- Lab Gown
- Closed in footwear
- Safety Glasses
- Gloves
- Mask

Emergency Procedures
In the event of an alarm, follow the instructions of the academic in charge. The initial sound (beep) is advising you to prepare for evacuation. During this time pack up your personal belongings. The second sound (whoop) gives instruction to leave. Follow the instructions of the academic in charge and the fire warden regarding the assembly point.
In the event of an injury inform the academic in charge (and/or lab staff). First aider and fire warden contact details are on display near the entrance/exit doors. There is a wall mounted First Aid Kit located near the entrance/exit doors.

Clean up and waste disposal
- Refer to SWP-MED-MED-00093: GASU - Dissecting embalmed cadaveric material and SWP-MED-MED-00094: GASU - Recording and tracking dissection and waste.
- Fluids on the floor are a major safety hazard and should be reported to staff immediately.
- Replace stools under the tables (if applicable).
- Remove your gloves and dispose in the biowaste bins provided.
- Wash your hands thoroughly with the soap and dry your hands with paper towel.
- Remove your lab gown when you leave the Mortuary.

Ethics Approval
This type of practical has been previously considered and approved by the UNSW Human Research Ethics Advisory Panel (HC180115).

Declaration
I have read and understand the safety requirements for this practical class, and I will observe these requirements.

Signature: .. Date: ..
Student number: ..

ANAT-SRA-Med&SciStudent relates to RA-MED-06. Date for review: 01/02/2023
11. Ethical behaviour and human remains

The learning activities in this course is centred around the study of human anatomical specimens that have been preserved and prepared from people who have donated their bodies to UNSW via a Bequeathal Program. Their donation makes it possible for you and your peers to study the human body. This is an extraordinary, generous act of these donors and their families and is a special privilege. Treating these remains with the utmost care and respect is mandatory, and our responsibility. It is good ethical practice and is mandated by NSW Law. The University operates the Bequeathal Program under the Code of Practice noted below, which all students are required to adhere to.

UNSW Department of Anatomy Code of Practice:

The University and Department of Anatomy recognises the magnitude of the contribution made by those who donate their bodies for the teaching of anatomy. We are committed to treating the human remains entrusted to our care with the utmost respect and professionalism. In keeping with this commitment, the University requires its employees and students to uphold all legal, public health, and ethical standards and guidelines associated with the handling of human bodies and human tissue samples.

Any activity which undermines its ability to meet UNSW’s legislative obligations, or which devalues the contribution made by those who donate their bodies for the purposes of the teaching of anatomy to students will be in breach of this policy and subject to further action.

The Department of Anatomy hosts a thanksgiving service to commemorate those people who donated their bodies to enable our students to study anatomy. Families of donors are invited to attend this special ceremony. Staff and students participate in this event through readings of poetry, music and song, and in the laying of flowers as the name of each donor is read. If you would like to participate in this ceremony, please record your interest by emailing our Bequethal Administrator (bequethal@unsw.edu.au)