Table of Contents

Staff Contact Details
Course Details
Course Description
Aims of the Course
Student Learning Outcomes
Graduate Attributes
Rationale for the inclusion of content and teaching approach
How the course relates to the Exercise Physiology Profession
How the course relates to other courses in the Exercise Physiology Program
Teaching strategies
Assessment
Summary of assessments
Assessment Task 1 – Progress examination
Assessment Task 2 – End of Session Examination
Assessment Task 3 – Classic paper assignment
Assessment task 4 - Blended learning assignment
Learning Outcomes for the Assignment
Submission of assessment tasks
Peer Marking Criteria
Academic honesty and plagiarism
Course schedule
Resources for students
Course evaluation and development
Health and Safety
Examination procedures and attendance requirements
Special consideration in the event of illness or misadventure

COURSE STAFF:

Convenor: A/Professor Stewart Head
Department of Physiology
Ph 9385 2555
Office: Wallace Wurth 314
s_head@unsw.edu.au

Co-Convenor: Dr Ingvars Birznieks
Department of Physiology
Ph 9385 8311
Office: Wallace Wurth 314
ingvars.birznieks@unsw.edu.au

Key Lecturer: Dr Stephen Chan
Department of Physiology
Office: Wallace Wurth level 3
stephen.chan@unsw.edu.au

Guest Lecturers: Dr John Morley
Dr Anthony Kee
A/Professor Janet Taylor
j.morley@uws.edu.au
a.kee@unsw.edu.au
jl.taylor@unsw.edu.au

Technical Officer: Mr Balu Daniel
School of Medical Sciences
d.balu@unsw.edu.au

Program Officer: Ms Carmen Robinson
School of Medical Sciences
Carmen.Robinson@unsw.edu.au
Course details

Credit Points: 6 UOC

Course Pre-requisites
PHPH2101- Physiology 1A or PHPH2121- Principles of Physiology A or PHSL2501- Human Physiology A or NEUR2201- Neuroscience Fundamentals

Course Description
This course examines how movement is controlled from brain to skeletal muscle. The major themes are the contribution of the brain and spinal cord to the control of movement, muscle function, motor learning, movement disorders, fatigue and ageing. A series of advanced practical classes will range from experiments with isolated mammalian muscle to human studies with electromyography. The lectures, practicals and tutorials will be complemented by a series of expert seminars which provide insight into current research in the field and reinforce the relationship between integrative neuromotor function, movement physiology and the cellular and molecular physiology underlying muscle and motor control.

Course Aims
To encourage the development of:
1. an understanding of how the brain and spinal cord interact to produce different movements
2. an understanding of skeletal muscle function and adaptation
3. an understanding of the mechanisms of motor learning and factors that influence motor learning
4. an awareness of the mechanisms and current treatments of various neuromuscular disorders
5. an appreciation of current techniques and future directions in movement neuroscience research

Understanding the motor system is a vibrant research area in brain sciences, spanning, for example, the molecular genetics of muscle tissue, the cellular physiology of motoneurones, the plasticity of nerve cells in the brain, animal models of diseases of movement, unravelling systems physiology in human subjects, and engineering control theories to identify the fundamental principles of motor control. In this course, you will be encouraged to learn and understand more about the physiology of the neuromuscular system. The emphasis is on how the central nervous, sensory and muscular systems work together to produce movements and how this is disrupted by disease and normal ageing.

Student Learning Outcomes
This term is used to describe what it is that you should be able to do, explain or understand if you have learned effectively in the course. For each lecture, tutorial, practical and assessment item, the expected learning outcomes will be explicitly stated. The assessment in the course will be matched as closely as possible to the stated learning outcomes. That is, the assessment will test how well you have achieved the learning outcomes of the course. The general learning outcomes for the course are as follows:

At the end of the course you should:
• Be able to communicate a mature understanding of how skeletal muscle and the nervous system work to generate controlled movements at a level sufficient for effective communication with health care professionals.
• Have an understanding of the key theoretical concepts in the field of movement neuroscience in order to allow easy extension of your understanding beyond the material covered in this course to specific topics that may be important in future clinical, research or educational contexts.
• Have an awareness of current and (likely) future directions in movement neuroscience research and an ability to independently research the literature to address questions related to the field that may arise in your future professional activities.
• Be competent in the use of basic EMG and nerve stimulation techniques for research and clinical procedures.

Graduate Attributes Developed in this Course – for Medical Science and Science Students
• the skills involved in scholarly enquiry
• an in-depth engagement with disciplinary knowledge in its interdisciplinary context
• the capacity for analytical and critical thinking
• the ability to engage in independent learning
• Information Literacy – the skills to locate, evaluate and use relevant information
• the skills of effective communication

Graduate Attributes Developed in this Course – for Exercise Physiology Students

• Understand the relationship between physical activity and health
• Apply clinical skills and knowledge relevant to cardiopulmonary, metabolic, musculoskeletal and neuromuscular rehabilitation
• Engage in independent and reflective learning for the betterment of professional clinical practice, following an evidence-based approach
• Communicate effectively with patients, colleagues and other health professionals

Rationale for the inclusion of content and teaching approach

How the course relates to the exercise physiology profession (for students in program 3871-Exercise Physiology) A solid understanding of mechanisms by which humans plan and execute movement is central to a comprehensive training program in exercise science, and critical for effective professional practice in exercise rehabilitation.

How the course relates to other courses in the Exercise Physiology program – The information and ideas presented in this course will build upon material on muscle and nervous system and function from the second level Anatomy and Physiology courses you have taken. This course also provides a conceptual base that is essential for the neuromuscular and musculoskeletal rehabilitation courses later in the program

Teaching Strategies

Lectures – This approach is used to present relatively large amounts of information at a time on specific topics throughout the course. PDF copies of the lecture notes will be available on Moodle prior to each lecture, so you should be able to think about and develop an understanding of the lecture concepts as they are presented, rather than writing voluminous notes. However, there will be information and explanations presented in lectures in addition to those covered in the notes that you should take down if they help you to understand the material. The lecturer will also try to allow some time for interaction and activities in each lecture to provide you with an opportunity to clarify or reinforce the ideas that have been presented. You should take these opportunities to think about the information that has been presented and ask questions to enhance your understanding.

Practicals – The purpose of the practical components of the course are twofold. The first purpose is to help you to develop technical skills that will be relevant in your professional career. It is essential that you obtain some hands-on experience with the major research and/or clinical techniques in human motor control, before you begin your practicum or the clinical rehabilitation courses. The second purpose is to use experiments to demonstrate and reinforce key theoretical concepts that have been covered in lectures. The questions contained in the practical outlines will guide your learning in this respect.

Tutorials – This format provides a more informal learning environment than a lecture. The sessions in weeks 3-6 will be structured around a “classic” research paper chosen from a field relevant to the course content from the preceding week. Students will be required to read the paper (which will be available on Moodle) before the tutorial. Students will then be encouraged to participate either by speaking or active listening in the structured discussion based around the classic paper. The purpose of these sessions is to enable the students to gain a core understanding of the scientific basis of the discipline. For details of the tutorials in week 7-12 please see the timetabled slots. Attendance at Tutorials is compulsory and an attendance role will be taken.

Blended learning weeks 11&12– The blended learning is designed to leverage the perspectives from the motor control lectures working on the content to produce a consolidated set of answers to the questions set (based on the content covered provided by Dr Ingvars Birznieks) in order to encourage broad communication for students across the motor control discipline. The blended tutorial sessions will review existing motor control lectures and make a set of summaries and ideas that will reflect the understanding of the students. Students will produce their own audio visual products to be used as blended learning aids. Created media products will be peer marked and ranked. Best products will be demonstrated in the lecture theatre. Creativity and engagement is a key component of the blended learning experience.

Independent study – There is insufficient time in the lectures, tutorials and practicals for you to develop a deep understanding of the concepts covered in this course. In order for you to achieve the learning
outcomes that will be assessed, you will need to revise the material presented in the course regularly. You will probably also need to do additional reading beyond the lecture materials in order to learn effectively. Relevant additional resources will be cited in each lecture.

Assessments – These tasks have been chosen as tools to enhance and guide your learning as well as a way of measuring performance, and are therefore central teaching strategy in this course.

Assessment
Assessment of your learning in the course will be achieved through examinations. The examination format tests your ability to recall and communicate knowledge of the subject matter without outside resources and in a time-constrained context. These requirements are similar to those encountered when dealing with a client or patient in a face-to-face setting, or when communicating with other health professionals or researchers. The examinations will be designed to determine how well you have achieved the general learning outcomes outlined above, and the specific learning outcomes outlined in each lecture/practical/tutorial. The classic paper assignment will assess your ability to access and interpret the scientific literature in the field of muscle and motor control, and to demonstrate your understanding of the material by designing your own hypothetical experimental paper. You may be required to perform similar tasks in many professional settings within exercise physiology practice or medical research. For example, you will refer to the scientific literature to inform clinic exercise prescription.

Summary of Assessment

<table>
<thead>
<tr>
<th>Assessment Task</th>
<th>Percentage</th>
<th>Due Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASSESSMENT TASK 1 - PROGRESS EXAMINATION (1 HOUR)</td>
<td>20%</td>
<td>Week 6 Tuesday 14th April</td>
</tr>
<tr>
<td>ASSESSMENT TASK 2 - END OF SESSION EXAMINATION (2 HOURS)</td>
<td>MCQ: 25%</td>
<td>Exam period</td>
</tr>
<tr>
<td></td>
<td>Short ans: 25%</td>
<td></td>
</tr>
<tr>
<td>ASSESSMENT TASK 3 – CLASSIC PAPER ASSIGNMENT</td>
<td>Paper 20%</td>
<td>Assessment task due in Friday 6th May (Week 9)</td>
</tr>
<tr>
<td>ASSESSMENT TASK 4 – BLENDED LEARNING ASSIGNMENT</td>
<td>Project 7%</td>
<td>Wednesday May 20th</td>
</tr>
<tr>
<td></td>
<td>Participation in peer marking 3%</td>
<td>Saturday May 23rd</td>
</tr>
</tbody>
</table>

ASSESSMENT TASK 1 - PROGRESS EXAMINATION
The purpose of this exam is to test your understanding of the concepts covered in the course during weeks 1-5 (lectures 1 – 10) plus the two practical sessions in weeks 2/4 and 4/5. The format will be a mixture of multiple choice and short answer questions. The exam will be held during the lecture timeslots, thus all students are required to attend on this day. A practice exam will be available on Moodle a week prior to the progress exam.

ASSESSMENT TASK 2 - END OF SESSION EXAMINATION
The purpose of this exam is to test your understanding of the concepts covered in the course including weeks 1-5. It will include questions which cover the remaining practical component of the course weeks 7/8/9/10/11/12. The format will be multiple choice and short answer questions. The exam will be held during the end of session exam period. A practice exam will be available on Moodle in the final week of the teaching session.

ASSESSMENT TASK 3 – CLASSIC PAPER ASSIGNMENT
Classic paper assessment component
In the tutorial on week eight, Students will be assigned one of the four classic papers presented in the tutorials weeks 2 to 5. The papers will be assigned randomly and is important that students make sure they attend all the classic paper tutorials. Attendance at the tutorials is compulsory. A role may be taken.
Section 1 This will be 50% of this assessment.

For the written classic paper assignment students will provide a synopsis of the assigned classic paper both from their reading of the paper and the notes they made on the discussion which will take place during the tutorial. It is in the student's best interests to ensure that they are prepared for each tutorial and participate in the discussion either directly or by active listening. This section must be no longer than 1000 words. Any text beyond this limit will be deleted. This section is structured to include:

1. Background of physiological context (10% 200 words)
2. Experimental approach, including techniques used and data analysis (10% 200 words).
3. Principal findings (10%, 200 words)
4. Statement of why this is a “classic” paper i.e. uptake and development of the field from this point (20%, 400 words).

Section 2 This will be 50% of this assessment.

In the second section of the assignment students will use the paper as the foundation in order to design an experiment to advance the hypothesis and findings laid out in the classic paper, extending the research.

1. This should be in the format of an experimental aim. (15% 300 words)
2. Provide an experimental design and methods designed to test their aim (15% 300 words)
3. Finally the students should undertake a thought experiment and predict the type of data they would expect to generate in their hypothetical experiments. The data in this section should be in the form of Tables, diagrams or graphs, students need to put some thought into the best way of analysing their data and they can use either one or a combination of these formats including figure legends – pay particular care to the labelling of the diagrams and figures. (20% 400 words).

Learning Outcomes for Assignment 3
- To develop and refine the skills needed to obtain information on a topic in muscle and motor control from scientific journals
- To improve your ability to interpret and assess scientific articles
- To develop your ability to comprehend and extend a field of scientific research.

Learning Outcomes for Assignment 4
- To work as an effective member of a multimedia educational team.
- To improve your ability to present complex scientific ideas in a straightforward manner using a video style format.
- To understand and engage in the process of Peer assessment using Moodle.
Submission of Assessment Tasks
Classic paper reports are to be submitted electronically through Turnitin via Moodle (NO HARD COPY). Blended learning assignment should be uploaded to YouTube. Dr Ingvars Birznieks will confirm details during your Tutorial in week 11.

Penalties for late submission of assignments – In cases where an extension has NOT been granted, the following penalties will apply: For assignments submitted after due date, a penalty of 50% of the maximum marks available for that assignment will be incurred. A further 25% of the maximum possible allocated marks (i.e., a total of 75%) will be deducted from assignments which are two (2) days late. Assignments received more than two (2) days after the due date will not be allocated a mark, however, these assignments must still be submitted to pass the unit.

<table>
<thead>
<tr>
<th>Classic paper Section 1</th>
<th>High Distinction</th>
<th>Distinction</th>
<th>Credit</th>
<th>Pass</th>
<th>Fail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Background of physiological context</td>
<td>Well presented, Clearly written, Concise, Comprehensive overview</td>
<td>Neatly presented, Clearly written Concise, Good overview</td>
<td>Neatly presented Acceptable written expression Good</td>
<td>Neatly presented, Some errors in written expression Adequate overview</td>
<td>Incorrect length, Untidy, Poorly written Incomplete overview</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Classic paper Section 2</th>
<th>High Distinction</th>
<th>Distinction</th>
<th>Credit</th>
<th>Pass</th>
<th>Fail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental approach, including techniques used</td>
<td>Clearly written, Concise, Insightful critique Including original ideas</td>
<td>Clearly written, Concise critique. Including some original ideas</td>
<td>Clearly written, Possibly with original ideas</td>
<td>Some errors in written expression acceptable summary but lacking original thought</td>
<td>Poorly written Inadequate Unable to demonstrate understanding of the task</td>
</tr>
</tbody>
</table>

Assignment Marking Criteria

ASSESSMENT TASK 4 – BLENDED LEARNING ASSIGNMENT

The project
For the project students will choose one of the motor control mechanisms reviewed during the Motor control discussion tutorial. Project may be also based on relevant literature research. It is expected that students will produce a short educational video or use any widely accessible audio-visual means and animations to explain the underlying principles and demonstrate it in action. This is group assignment performed by 3-4 students. While it is teamwork and everyone is expected to take part in every step of the production, it is suggested that each group assigns task coordinating responsibilities to the individuals. For example group may name one student coordinating the narrative, one student coordinating screenplay and one or two students coordinating the video editing.

Videos should be no longer than 3 minutes. It is idea that counts, video quality should not matter while it is sufficient to convey the message. You can use your smartphone, i-device, webcam or digital camera. You can digitally edit and combine separately shot videos or shoot as one continuous take requiring no editing.

Videos should be uploaded to YouTube.

Videos require some embedded text recapping the main concepts. Videos should start with the title page and finish with the end credits stating contributions.
Peer marking
Created blended learning products will be peer marked by other students enrolled in this course. Students will receive marks for participation in the peer marking process. The final mark will be decided by course convenors based on the average peer mark.

Peer Marking Criteria

Scientific quality of the narrative (3 marks): scientific depth (1 mark), scientific correctness (2 marks).

Media learning value (4 marks) as detailed in the table

<table>
<thead>
<tr>
<th></th>
<th>4 marks</th>
<th>3 marks</th>
<th>2 marks</th>
<th>1 marks</th>
<th>0 marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Media learning value: clever, engaging, entertaining, demonstrations helping to explain difficult concepts and promoting interest in the topic.</td>
<td>Product has high learning and entertaining value. Explanation of scientific concept is significantly aided by screenplay and audio visual means. Visually appealing or humorous presentation.</td>
<td>Product has good learning value. The investigated concept is explained well, but presentation is not sufficiently engaging.</td>
<td>Product has little learning value. Project has shortcomings explaining the scientific concept. Presentation is not engaging.</td>
<td>Product requires amendments to be considered for learning. Project identifies the question, but fails to explain it properly.</td>
<td>Product not suitable for learning. Project has no substance.</td>
</tr>
</tbody>
</table>

Academic honesty and plagiarism
Plagiarism is using the words or ideas of others and presenting them as your own. Plagiarism is a type of intellectual theft and is regarded by the university as academic misconduct. It can take many forms, from deliberate cheating to accidentally copying from a source without acknowledgement. For details see

student.unsw.edu.au/conduct
<table>
<thead>
<tr>
<th>Week</th>
<th>Date</th>
<th>Tutorial /Seminar</th>
<th>Lecture 1</th>
<th>Lecture 2</th>
<th>Laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>02 Mar</td>
<td>Levels of assumed knowledge plus discussing the Classic paper concept</td>
<td>L1 - Course introduction</td>
<td>L2 Skeletal muscle: mechanisms of force generation including excitation-contraction coupling and a critical discussion of the different research techniques.</td>
<td>NO PRACTICAL CLASS</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SH</td>
<td>SH</td>
<td>SH</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>SH/SC</td>
<td>SH</td>
<td>SH</td>
<td>SH/SC</td>
</tr>
<tr>
<td>3</td>
<td>16 Mar</td>
<td>Classic Paper Assignment –session 2</td>
<td>L5– Neuropathy in the nervous system during normal aging. Plus: Muscle pain: Neural mechanisms.</td>
<td>L6 – Muscle building drugs and performance supplements. We use clenbuterol and creatine as our examples.</td>
<td>Isolated mammalian muscle; contractile properties of slow and fast twitch muscle fibre types.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SC/SH</td>
<td>SH</td>
<td>SH</td>
<td>SH/SC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IB</td>
<td>SC</td>
<td>SC</td>
<td>IB/ SC/JM (SH to consult)</td>
</tr>
<tr>
<td>5</td>
<td>30 Mar</td>
<td>Classic Paper Assignment –session 4</td>
<td>L9 – Muscle fatigue; the price of sporting success and a consequence of disease and normal aging</td>
<td>L10 – Muscle cramp in the young and old; causes and treatments (Tonic water?)</td>
<td>Grip Force, Fatigue, EMG and muscle pain.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IB</td>
<td>SH</td>
<td>SH</td>
<td>IB//SC/JM</td>
</tr>
</tbody>
</table>

6th April to 12th April: Mid Semester Recess

<p>| 6 | 13 Apr | L11 - PROGRESS EXAM | L12 Muscular dystrophy: the 2nd most common fatal genetic disease in humans. | NO PRACTICAL CLASS |</p>
<table>
<thead>
<tr>
<th>Week</th>
<th>Date</th>
<th>Tutorial /Seminar</th>
<th>Lecture 1</th>
<th>Lecture 2</th>
<th>Laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>(Muscle kinetics and drug action) SH</td>
<td>IB</td>
<td>IB</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>27 Apr</td>
<td>Progress exam discussion</td>
<td>L15 - Brain and movement (the ascending and descending tracts)</td>
<td>L16 - Cortical control of movement</td>
<td>EMG – motor unit activation, EMG: force relation. IB/SC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SH/SC</td>
<td>IB</td>
<td>JM</td>
<td></td>
</tr>
</tbody>
</table>

Assessment task due in via Turnitin Friday May 8th end of week 9

<table>
<thead>
<tr>
<th>Week</th>
<th>Date</th>
<th>Tutorial /Seminar</th>
<th>Lecture 1</th>
<th>Lecture 2</th>
<th>Laboratory</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>04 May</td>
<td>Muscles and genes AKe</td>
<td>L17 Motor learning and internal models</td>
<td>L18 – Sensorimotor control – voluntary movement, feedback and feed-forward control</td>
<td>EMG – Hoffmann Reflex 3hrs IB/SC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AKe</td>
<td>IB</td>
<td>IB</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>11 May</td>
<td>Motor control discussion</td>
<td>L19-Cerebellum and motor control: learning & disorders</td>
<td>L20 - Basal Ganglia in motor control, including Parkinson’s disease</td>
<td>EMG – Hoffmann Reflex 3hrs IB/SC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IB</td>
<td>IB</td>
<td>IB</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>18 May</td>
<td>Blended learning 1</td>
<td>L21 – Sensorimotor control of dexterous manipulation in humans</td>
<td>L22 - Neural aspects of fatigue JT</td>
<td>Pathology of motor control including Parkinson’s. 3hrs IB/SC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IB</td>
<td>IB</td>
<td>JT</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>25 May</td>
<td>Blended learning 2</td>
<td>L23 – Plasticity and adaptation to training and disuse</td>
<td>L24- Stroke and rehabilitation IB</td>
<td>Pathology of motor control including Parkinson’s. 3hrs IB/SC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>IB</td>
<td>IB</td>
<td>IB</td>
<td></td>
</tr>
</tbody>
</table>

Study Period 6th June- 11th June: Exam period 12th-29th June
COURSE RESOURCES

Moodle
Information about the course and a number of electronic study resources can be accessed via the UNSW Moodle system. Moodle is an internet-based set of Course Tools designed to enable online learning that can be accessed from MyUNSW. You can use Moodle to download lecture notes, access your grades, find reference material in the course (such as this document), and communicate with the lecturer and your peers.

EchoCenter provides digital audio recordings and visual recordings of the audio-visual resources provided during the lecture. The echo centre for this course can be accessed via Moodle.

UNSW Library
The University Library provides a range of services to assist students in understanding how to identify what information is required for assignments and projects; how to find the right information to support academic activities; and how to use the right information most effectively.
Homepage: UNSW Library website

UNSW Library High Use Collection
We have placed some key books in the library High Use Collection (HUC) for your convenience. To search for these items use the above link and search using the course code NEUR3101.

Textbooks

Suggested Reference Books
Students in Advanced Science (Neuroscience) or Medical Sciences may prefer to use the textbook:

Suggested Reference Journals
Course Evaluation and Development

A Course and Teaching Evaluation and Improvement (CATEI) survey will be provided in the final weeks of the course to formally gather student feedback.

In response to feedback from previous students we have: 1) Altered the format of the tutorials so that they’re now more structured and based around a classic research paper, and 2) increased the duration of the practical sessions and expanded on the details provided in the instructions for practical classes and halved the class sizes to allow more student-instructor interaction. 3) Removed 1 EMG practical which was thought to be repetitive and replaced it with a new interactive session on the causes and treatment of conditions which effect motor control. 4) Reduced the didactic lecture contend by 30%. 5) Changed the format of the short answer questions in the exams so that the students have a choice of questions to answer, whereas previously all short answer questions were compulsory.

Health and Safety (HS)

Class activities must comply with the NSW Occupational Health & Safety Act 2000 and the Occupational Health & Safety (OHS) Regulations 2001. It is expected that students will conduct themselves in an appropriate and responsible manner in order not to breach HS regulations. Further information on relevant HS policies and expectations is outlined at: http://www.ohs.unsw.edu.au/

Examination procedures and attendance requirements

Attendance is expected at all, practicals and tutorials for this course. Attendance at all practicals, will be recorded. You are strongly advised to attend the lectures as well as reviewing them on the Echo recording sessions. Students who do not participate in the practical sessions for any reason other than medical or misadventure, will be marked absent and may be awarded a grade of FAIL for the entire course. If absent for medical reasons, a medical certificate must be lodged with the lecturer within 7 days of the time period of the certificate’s expiry. **Deferred Exams**

It is intended that supplementary exams for the School of Medical Sciences in Semester 1, 2015 will be held MID-END July 2105.

Special consideration in the event of illness or misadventure. Please note the following Statement regarding Special Consideration.

If you believe that your performance in a course, either during session or in an examination, has been adversely affected by sickness, misadventure, or other circumstances beyond your control, you should notify the Registrar and ask for special consideration in the determination of your results. Such requests should be made as soon as practicable after the problem occurs. **Applications made more than three working days after the relevant assessment will not be accepted except in TRULY exceptional circumstances.**

When submitting a request for special consideration you should provide all possible supporting evidence (eg medical certificates) together with your student number and enrolment details. Consideration request forms are available from Student Central in the Chancellery or can be downloaded from the web page linked below. Note that normally, if you miss an exam (without medical reasons) you will be given an absent fail. If you arrive late for an exam no time extension will be granted. It is your responsibility to check timetables and ensure that you arrive on time.

Students who apply for consideration to Student Central must also contact the Course Convenor immediately. All applications for Special Consideration will be processed in accordance with UNSW policy (see: https://student.unsw.edu.au/special-consideration). If you miss an assessment and have applied for Special Consideration, this will be taken into account when your final grade is determined. You should note that marks derived from completed assessment tasks may be used as the primary basis for determining an overall mark. Where appropriate, supplementary examination may be offered, but only when warranted by the circumstances.

SOMS Grievance Officer: Dr Priti Pandey. p.pandey@unsw.edu.au

Student equity and diversity issues

Information for students with disabilities is available at http://www.studentequity.unsw.edu.au/