Contents
Course convenor 2
Units of credit 2
Hours per week 2
What is anatomy? 2
Course aims 2
Student learning outcomes 2
Course relationships 3
Continual course improvement 4
Teaching rationale 4
Teaching strategies 4
Laboratory Class Attendance Requirement 4
Assessment 5
Failure to sit a test 5
Guidelines on extra-curricular activities affecting attendance 5
Resources for students 7
Anatomical terms 7
Ethical behaviour and human remains 8
Plagiarism 8
Grievance procedures 9
Health and Safety Rules for Students in the Dissecting Room 10

Course Lecture and Laboratory Class Schedule 13
Week 1: General Anatomy, General Skeletal System & Axial Bones 14
Week 2: Appendicular Bones & The Articular System 20
Week 3: General Muscular System, Axial & Upper Limb Muscles 24
Week 4: Lower Limb Muscles, General & Central Nervous System 28
Week 5: Peripheral Nervous System 32
Week 6: Eye & Ear 35
Week 7: Revision Lab (9-11:30am or 11:30am-2pm Monday 20/04/2015) 39
 Spot Test No.1 (1-2pm or 2-3pm Tuesday 21/04/2015) 39
Week 8: Cardiovascular System 40
Week 9: Respiratory System 44
Week 10: Digestive System 47
Week 11: Female & Male Reproductive Systems 51
Week 12: Urinary & Autonomic Nervous Systems 54
Week 13: Revision Lab (9-11:30am or 11:30am-2pm Monday 01/06/2015) 57
 Spot Test No.2 (1-2pm or 2-3pm Tuesday 02/06/2015) 57

Course convenor

Dr. Craig Hardman
Room 447, Wallace Wurth Building B27, UNSW, Sydney NSW 2052
Telephone: +61 2 9385 3569
E-mail: craig.hardman@unsw.edu.au

Units of credit
This course is worth six units of credit (6 UOC).

Hours per week
Five hours per week (5 HPW) comprising one 2 hour lecture and one 3 hour laboratory class.

What is anatomy?

Anatomy literally means to break apart or separate the human body into its parts; to dissect the body. The earliest recorded anatomy teachers, Herophilus and Erasistratus, lived in Ancient Alexandria and taught anatomy between 300 BC and the second century AD. However, the roots of anatomy go back much further – perhaps 4,000 years ago – with the mummification practices of the Ancient Egyptians and with the Ancient Greek physicians. The most famous anatomist is the Ancient Roman Galen, whose work remained the standard for almost 1,300 years until the European Renaissance. During and after the Renaissance, anatomy developed into a modern scientific discipline. Therefore, anatomy is one of the oldest scientific fields and one that has always and continues to underpin medicine. It is also a well established scientific discipline in its own right.

Anatomy is a dynamic and diverse science that considers the structures of the body from the cellular level through to the body’s external surface and beyond. Anatomy examines the cells and tissues of the body (cell biology and histology), the systems of the body (integumentary, skeletal, muscular, nervous, cardiovascular, lymphatic, respiratory, alimentary, urinary, genital and lymphoid systems), the joints, movements and biomechanics of the human body, human comparative and evolutionary anatomy (anthropology), the development of the embryo and postnatal growth of the infant and child, as well as clinical and radiographic anatomy. Anatomy at UNSW teaches and researches across most of these areas. Note that the term gross anatomy refers to the study of the structures of the body that are observable without the aid of microscopes (i.e. the naked eye) and which can be palpated (touched), while microanatomy is sometimes used to refer to the microscopic structures of the body (e.g. tissues; the subject of histology).

Course aims

The main aim of this course is to provide students with a solid foundation in the gross anatomy of the whole human body.

Student learning outcomes

Students should complete the course knowing (among other things):

1. Practical laboratory skills in anatomy and an understanding of the ethics of working with human remains.
2. The basic plan of the human body; its major tissue types, body planes, spatial relations and movements.
3. Some general anatomical terms including common suffixes and prefixes.
4. The role and importance of the skeletal system, the names of major bones, and the names and functions of some major bony features.
5. The role and importance of the muscular system, the names of major muscles and muscle groups and their major functions.
6. Major types of joints in the human body and the basic structure of joints.
7. The role and importance of the central nervous system, its major functional divisions, the names and functions of its major components.
8. The major peripheral nerves and their main functions.
9. The role and importance of the cardiovascular system and the names and functions of its major components.
10. The role and importance of the respiratory system and the names and functions of its major components.
11. The role and importance of the digestive system and the names and functions of its major components.
12. The role and importance of the urinary system and the names and functions of its major components.
13. The role and importance of the reproductive systems and the names and functions of their major components (males and females).
14. The capacity to apply knowledge and to think critically within the anatomical sciences.

The University of NSW has developed a list of attributes which its graduates should possess upon graduation (the ‘graduate attributes’). The curriculum and assessment of this course have been designed to help students to develop these capabilities. Students completing the course will have gained knowledge and skills that contribute to directly to them acquiring these attributes during their study at UNSW. One way this has occurred is through curriculum mapping of this course.

For Science, the UNSW graduate attributes are as follows:
1. Research, inquiry and analytical thinking abilities. Technical competence and discipline specific knowledge. Ability to construct new concepts or create new understanding through the process of enquiry, critical analysis, problem solving, research and inquiry.
2. Capability and motivation for intellectual development. Capacity for creativity, critical evaluation and entrepreneurship. Ability to take responsibility for and demonstrate commitment to their own learning, motivated by curiosity and an appreciation of the value of learning.
3. Ethical, Social and Professional Understanding. Ability to critically reflect upon broad ethical principles and codes of conduct in order to behave consistently with a personal respect and commitment to ethical practice and social responsibility. Understanding of responsibility to contribute to the community. Respect and value social, multicultural, cultural and personal diversity.
4. Communication. Effective and appropriate communication in both professional (intra and inter disciplinary) and social (local and international) contexts.
5. Teamwork, collaborative and management skills. Ability to recognise opportunities and contribute positively to collaborative scientific research, and to perceive the potential value of ideas towards practical applications. Demonstrate a capacity for self management, teamwork, leadership and decision making based on open-mindedness, objectivity and reasoned analysis in order to achieve common goals and further the learning of themselves and others.
6. Information literacy. Ability to make appropriate and effective use of information and information technology relevant to their discipline.

Course relationships

ANAT2111 Introductory anatomy is the foundation course for all advanced (Level III) gross anatomy courses at UNSW: Visceral Anatomy (ANAT3121), Functional Anatomy of the Head, Neck and Back (ANAT3131), Functional Anatomy of the Limbs (ANAT3141) and Neuroanatomy (ANAT3411). A number of other courses offered by anatomy compliment these gross anatomy offerings, and students with an interest in anatomy are strongly urged to undertake them: Histology: Basic and Systematic (ANAT2241) and Embryology: Early and Systematic Development (ANAT2341). Moreover, those students with an interest in microanatomy and
development will find the Level III courses Microscopy in Research (ANAT3212) and Cell Biology (ANAT3231) of interest. More generally, anatomy courses compliment the subjects offered by other areas within the School of Medical Science (i.e. Physiology, Pharmacology and Pathology) as well as courses taught in biological and biomolecular science, genetics, psychology, optometry, vision and food science, microbiology, immunology and engineering.

Continual course improvement

In this course evaluative feedback on this course is gathered at the completion of the course, using among other means, UNSW's Course and Teaching Evaluation and Improvement (CATEI) Process. Student feedback is taken seriously, and continual improvements are made to the course based in part on such feedback. Based on feedback from 2008-2014 the amount of material covered in some practical classes has been modified and the order in which some topics are presented has been changed.

Teaching rationale

While in many ways this course is quite conventional, especially in terms of teaching strategies, students are strongly encouraged to engage with the ideas and materials covered. The role of the teacher (lecturer/tutor) is to impart knowledge, but also to help students navigate their way through the vast subject that is anatomy. Students should feel free to question and think critically, even about basic knowledge covered; things that might be considered unwavering ‘facts’. With this in mind, students are strongly encouraged, and will be supported to be, enquiring; to ask questions, make pertinent observations, and to share experiences and knowledge with the lecturer/tutors and classmates. The philosophy of the course is also fundamentally about helping students to develop an enthusiasm for learning, especially about their own body and biology. This course also aims to exploit the teaching-research nexus, by feeding research findings and developments, as well as knowledge and skills of the teachers, into teaching and learning.

Teaching strategies

Teaching and learning are a mixture of traditional style lectures and laboratories, as well as videos, where relevant. This course comprises a 2 hour lecture, and a 3 hour laboratory class, per week (total of five hours per week).

<table>
<thead>
<tr>
<th>Lectures (all in Central Lecture Block Theatre 8)</th>
<th>Laboratory (all in room 101 Wallace Wurth Blg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Monday 9:00-11:00am Weeks 1-6,8-12*</td>
<td>Tuesday 11:00am-2:00pm Weeks 1-6,8-12*</td>
</tr>
<tr>
<td>OR</td>
<td>Tuesday 2:00pm-5:00pm Weeks 1-6,8-12*</td>
</tr>
</tbody>
</table>

* Note: in weeks 7 and 13 there are no lectures but revision sessions instead. These revision sessions will held be held during and immediately after the normal lecture time. Spot test 1 and 2 are during the normal practical times of Weeks 7 and 13 (see course timetable below for more details).

Laboratory class attendance requirement

There is an 80% attendance requirement for the 11 laboratory classes of this course and a role will be taken by your tutor during each practical class (please note that the revision classes are not compulsory and are NOT included in this requirement). The physical study of anatomical specimens (i.e. professional dissections of human bodies) as well as models and x-rays is an essential component of this course. If you do not attend the laboratory classes then you have not satisfactorily completed this requirement. Any missed class (for either health and/or any other reason) will be counted as an absence. If you are absent for 3 or more of the 11 laboratory classes then you will be given an absent fail for the course. An application for
Introductory Anatomy – Session 2, 2014

special consideration should be lodged with the Student Central for any class which is missed for health reasons.

Assessment

1. Mini Lab Tests 5%
2. Spot Test 1 25%
3. Spot Test 2 20%
4. Written Exam 50%

1. **Mini Lab tests**
 Eleven x 5 minute tests are held at the start of each laboratory class in room 101 the Anatomy Dissection Laboratory. *Format:* students will be given a test page at the start of each class and asked to write the names of the anatomical structures as are indicated on the page. The diagrams on each test page will be taken from the slides of the lecture which immediately precedes the laboratory class. Test papers will be marked by your tutor and the best 9 of the 11 test results will be used to give a grade of out of 5 for the entire semester.

2. **Spot tests**
 These tests are held in room 101 the Anatomy Dissection Laboratory and aim at assessing the student's knowledge and skills acquired during the laboratory classes. *Format:* students will have approximately 2 minutes each at 12 (spot test 1) and 10 (spot test 2) stations (with 2 minute rest spots in between) to name structures which have been labelled on specimens and/or models. At all stations there will also be theory questions relating to the labelled structures. Tests usually run no more than 1 hour. This assessment contributes to the development of graduate attributes 1-4 (see above).

 - **Spot Test No.1:** Covers the practical content covered in Weeks 1-6. *To be held Week 7 during the normal Tuesday Practical times.*
 - **Spot Test No.2:** Covers the practical content covered in Weeks 8-12. *To be held Week 13 during the normal Tuesday Practical times.*

3. **Written tests**
 A single 2 hour written exam will be held during the formal examination period. The aim of this exam is to assess the student's knowledge of the course's lecture and practical class content as well as and their ability to make connections between ideas and problem solve. The written exam will usually comprise 50 multiple choice questions, 20 short answer questions, as well as 3 to 4 short essay questions. Some of the essay questions may require the adding of labels and text to tables, graphs and/or pictures whilst others may require long text only answers.

Failure to sit an Assessment

Failure to sit a test without lodgement of an application for consideration with Student Central will lead to automatic failure of the test. A student may be required to sit a viva (oral) exam, supplementary test paper or written assignment in place of a missed exam. It is intended that supplementary exams for the School of Medical Sciences in Semester 1, 2015 will be held on the 14th, 15th and 16th July, 2015.

Guidelines on extra-curricular activities affecting attendance

1. **Background to Guidelines**
 This policy relates to the following extra-curricular activities:
 1. Employment.
 2. Voluntary work.
 3. Sport, music or other recreational activities.
2. Guidelines

1. Failure to meet attendance requirements because of extra-curricular activities will not be accepted unless prior approval is obtained.

2. Failure to meet assessment requirements (e.g. failing to submit assignment by deadline, failing to attend an examination) because of extra-curricular activities will not be accepted unless prior approval is obtained.

3. Under no circumstances will external work requirements be accepted for non-attendance. The School understands the need for many students to work part-time but this must be arranged so as it does not affect attendance.

4. Approval for non-attendance will be considered for the following activities:
 - A single, significant activity related to voluntary work. Note that regular voluntary work will not be accepted for recurrent absences.
 - A single, significant activity related to sport, music or other recreational activity being undertaken at an elite or semi-professional level. Note that regular sporting or other recreational activities will not be accepted for recurrent absences.
 - Attendance at student-related conferences/courses organised by student organisations or health professional groups and national or international education meetings.
 - Attendance at conference for academic purposes including presenting papers from Honours projects.

5. Approval to attend an extra-curricular activity must be obtained before the event and will not be taken into consideration retrospectively if a student has failed to meet attendance or assessment requirements.

6. Approval to attend an extra-curricular activity does not exempt a student from meeting attendance or assessment requirements. Approval will depend on:
 - The overall impact on attendance and whether class or other teaching activities can be made up at an alternative time to ensure that the course requirements have been met. Students requesting long periods of absence will be required to take leave and attempt the course later.
 - The nature of the assessment and whether an alternative mechanism is available to meet the assessment requirement. This may include extension of a deadline for submission of an assignment or sitting an examination at a later time. As a rule, additional examinations cannot be held and a student would be required to sit a missed examination when supplementary or later rounds are being conducted. This may delay a student’s progress.

Approval will not be granted if alternative arrangements for meeting attendance or assessment requirements cannot be made.

7. Approval will also depend on the student’s academic performance and will not be granted if disruption to the student’s progress would be considered disadvantageous.

3. Obtaining permission to attend extra-curricular activities

1. Approval to be absent from a course for one week or more, or when the 80% attendance rule may be contravened, must be obtained from the Course Convenor. Students must contact the Course Convenor as early as possible to ensure that alternative arrangements can be made. Late requests are unlikely to be approved, as alternate arrangements cannot be made without sufficient notice.

2. If temporary absence from a course is approved, the student must inform the School of Medical Sciences student administrator (Carmen Robinson).
The School of Medical Sciences will not consider financial consequences to students (e.g. loss of registration fees for conference, loss of grant) if students have already made arrangements to attend extra-curricular activities without approval.

Resources for students

Recommended Text, Atlas & Web Resource:

Other Texts:

Other books which may be used instead of or in addition to the recommended text:

Other Atlases:

Other atlases which may be used instead of or in addition to the recommended atlas:

Lecture recordings:

Digital recording of all lectures will be made via the University’s *Echo* system. PDF files of the lecture presentations will also be available after the lecture has been given (for the student to review whilst viewing to the Echo recordings). Note that hardcopies of the lecture slides and/or notes will not be provided. Lectures and accompanying materials will be made available on the *Moodle* course homepage.

Anatomical terms

One of the largest challenges for new students in anatomy is learning anatomical terms. In many ways the process is like learning a new language. All scientific disciplines have a set of terms and across the whole of science they are derived mostly from Latin and Ancient Greek words. Why Latin and Ancient Greek? Latin, in particular, is a ‘dead’ language, meaning that no one alive today uses it as the ‘mother’ tongue. Thus, it is not subject to fashions and constant change, like most living languages, especially English. Moreover, the spelling of Latin and Ancient Greek words has been agreed to for a long time.

In Australia and other English speaking countries, anatomical terms are Anglicised (translated to English). This means that in many cases the terms we teach are the English equivalent of the Latin or Greek word (e.g. Latin = *Corpus ossis ili*. English = Body of the ilium). There are, however, still plenty of Latin and Greek terms used. Their pronunciation, however, is an entirely different matter. It varies greatly across English speaking countries; even at UNSW you will find lecturers employing different pronunciations, partly as a result of where they learned their anatomy! What matters is that we all know which structure we are referring to when we use a particular term; there are no points for correct pronunciation as most of the variants are equally correct!
An international organisation called the *Federative Committee on Anatomical Terminology* with representatives from many countries has published the standard (agreed) set of anatomical terms that anatomists follow. It is called *Terminologia Anatomica* and the last edition was published in 1998. Most internationally oriented textbooks (such as *Gray's Anatomy*) apply *Terminologia Anatomica*. In this course, we strive also to use this standard set of anatomical terms as much as possible as we believe that is represents best international practise as well, as making it easier for you to learn.

The terms that you need to know in laboratory classes are given in **bold**. You should, however, endeavour to understand all of the information given in laboratories in order to do well in the course.

Ethical behaviour and human remains

In this course, you will be required to study human anatomical (prosected = professionally dissected) specimens. Each year, people donate their bodies to UNSW so that you and your colleagues can learn about the human body directly from their remains. These are precious materials provided through the extraordinary generosity of the public (our donors and their families). This is a special privilege afforded very few people. By law, responsibility to the donor and their family members, and as a matter of good ethical practice you must treat all human remains with great respect and care. Mishandling of specimens and/or inappropriate behaviour within the anatomy laboratory (including the photographing of any specimens) is a form of academic misconduct and will be reported to the Pro-Vice-Chancellor (Students). Academic misconduct is taken very seriously at UNSW and can result in expulsion from UNSW as well as criminal proceedings.

Plagiarism

Plagiarism is the presentation of the thoughts or work of another as one’s own. Examples include:

- direct duplication of the thoughts or work of another, including by copying material, ideas or concepts from a book, article, report or other written document (whether published or unpublished), composition, artwork, design, drawing, circuitry, computer program or software, web site, Internet, other electronic resource, or another person’s assignment without appropriate acknowledgement;
- paraphrasing another person’s work with very minor changes keeping the meaning, form and/or progression of ideas of the original;
- piecing together sections of the work of others into a new whole;
- presenting an assessment item as independent work when it has been produced in whole or part in collusion with other people, for example, another student or a tutor; and
- claiming credit for a proportion a work contributed to a group assessment item that is greater than that actually contributed.

For the purposes of this policy, submitting an assessment item that has already been submitted for academic credit elsewhere may be considered plagiarism. Knowingly permitting your work to be copied by another student may also be considered to be plagiarism. Note that an assessment item produced in oral, not written, form, or involving live presentation, may similarly contain plagiarised material. The inclusion of the thoughts or work of another with attribution appropriate to the academic discipline does not amount to plagiarism.

The Learning Centre website is main repository for resources for staff and students on plagiarism and academic honesty. These resources can be located via: student.unsw.edu.au/plagiarism

The Learning Centre also provides substantial educational written materials, workshops, and tutorials to aid students, for example, in:

- correct referencing practices;
• paraphrasing, summarising, essay writing, and time management;
• appropriate use of, and attribution for, a range of materials including text, images, formulae and concepts.

Individual assistance is available on request from The Learning Centre.

Students are also reminded that careful time management is an important part of study and one of the identified causes of plagiarism is poor time management. Students should allow sufficient time for research, drafting, and the proper referencing of sources in preparing all assessment items.

Grievance procedures
If you have a problem or grievance with the course, you should first attempt to resolve it with the course authority. If you feel that your grievance has not been resolved in this way, it should be directed to the SOMS Grievance Officer, currently Dr Priti Pandey, Telephone: +61 2 9385 2483 E-mail: p.pandy@unsw.edu.au
Health, Safety & Ethical Rules for Students in the Dissecting Room

There are some rules that are enforced for the safety of the staff and students, while others are concerned with the need for care and respect of the prosection material.

General courtesy

- Students are required to attend each lecture and the assigned tutorial/laboratory class unless given special permission. Provision of an appropriate medical certificate to the course authority will be required for any Special Consideration.
- You may enter and view specimens in the Gross Anatomy Laboratory (101) only in the presence of your tutor and/or during your designated tutorial/laboratory class hours. You are not permitted to take visitors into the Gross Anatomy Laboratory.

Health and Safety Rules

A detailed risk assessment for student activities in the Gross Anatomy Laboratory is located on the notice board at the front entrance (near 1st floor lifts).

When in the Gross Anatomy Laboratory, you are required to:

- **always put on your laboratory coat** when you enter the lab. If you have forgotten to bring your lab coat, purchase a disposable coat from MESO on the ground floor in WW building or the Union shops on campus. Lab coats must not be worn in the hall or anywhere outside the laboratories.
- **wear covered shoes with enclosed heels**, never thongs or sandals.
- **wear latex or vinyl gloves** when touching wet specimens (gloves are provided).
- **never eat or drink**.
- **never put anything in your mouth**. For example, pens or pencils that you may have picked up from the table.
- **avoid inhaling** preservative solutions for prolonged periods. If you feel in need of fresh air, ask permission to leave the laboratory for a few minutes.
- **report all accidents or incidents** immediately to a staff member for assessment without exception. Injuries involving sharps or needle-stick will require a blood test as soon as possible.

At the end of your laboratory class:

- **cover wet specimens** with the towels provided. Make sure that towels do not hang over the edge of the table, because this allows fluid to drip onto the floor. Fluids on the floor are a major safety hazard and should be reported to staff immediately.
- **replace stools** under the tables in your cubicle.
- **remove your gloves** and dispose in the biowaste bins provided.
- **wash your hands** and instruments thoroughly with the soap provided and dry your hands with the paper towel.
- **remove your laboratory coat** when you leave the dissecting room.

Preservative solution

There are 3 main chemicals used as preservation fluids in the Gross Anatomy Lab:

- **phenoxyethanol** (2% in solution)
- **methylated spirits** (10%) and
- **formalin** (5%)

The safety data sheets (SDSs) for these chemicals are located on the notice board outside the lab. Women of reproductive years, and especially those who know they are pregnant, should note that all of these are suspected human reproductive and developmental toxins and therefore may pose a hazard to the unborn child. In addition, formalin (formaldehyde solution)
is a human carcinogen. Avoid these chemicals coming into contact with your eyes and skin and they should not be ingested.

Most anatomy specimens are stored in 2% phenoxyethanol, which is classified as relatively non-toxic, but some brain tissue may be stored in formalin. You should always wear gloves when handling specimens and must avoid ingestion of this chemical and contact with your skin or eyes. Formaldehyde is reported to cause allergic skin and respiratory effects. The potential for adverse health effects, however, is markedly reduced at the concentrations used for embalming and storage of specimens in the Gross Anatomy Laboratory, i.e., the “formalin” solution is less than 5% of a 37% solution of formaldehyde. The teaching spaces are well ventilated using a combination of air extraction and conditioning to ensure the level of chemical fumes are kept well below the acceptable health and safety levels.

First Aid

Room 101 staff can provide First Aid during office hours and a list of other safety personnel is located beside the building lifts. First Aid Kits are located on the left wall near the Gross Anatomy Laboratory entrance door and in the east wing on the ledge opposite cubicle E4. All incidents must be reported.

Emergency evacuation

In the case of a fire or other emergency the evacuation alarm will sound. When it sounds for the first time this indicates that everyone should get prepared in case it is necessary to evacuate. When it sounds for the second time, an announcement will be made over the speaker system - follow these instructions. Staff will be on hand to supervise any evacuation and the emergency exit is at the south end of the lab. Do not use the lifts. The evacuation assembly area is the landscaped space immediately to the east of the Chancellery and adjacent to the Clancy Auditorium. Do not assemble anywhere else and do not leave this area until instructed.

Additional Safety Information

If additional safety information is required you can ask the course convenor or the Gross Anatomy Laboratory Manager (Mr Vincent Strack). The latest safety information is always available from the SOMS HS Webpage.

http://medicalsciences.med.unsw.edu.au/staff/health-safety

Care and respect of prosected material

You are learning from human material prepared from people who have generously donated their bodies for the benefit of science. Skilled staff members have dissected the specimens to allow you, the student, to see anatomical structures in fine detail. Apart from caring for the specimens, it is important for all students learning Anatomy to have and show utmost respect for the specimens at all times, in the Gross Anatomy Laboratory, Room 101, and in the Anatomy Museum (Room G09). Great care should always be exercised when handling specimens, in order to preserve their delicate structure.

Some specific points:

- Always use only blunt forceps to handle specimens and probes to point to structures, i.e. never pull at any parts of the specimen.
- It is illegal for any anatomical material to be removed from the premises of the Department of Anatomy for any purpose whatsoever (except of course, for the funeral). All anatomy specimens are micro-chipped for identification and record keeping.
- Photography and video recording are not permitted in the Gross Anatomy Laboratory 101, or any Anatomy Museums.

Ken Ashwell 21st January 2015

Due for review: 25th January 2016
Hazards	Risks	Controls
Physical	Cold temperature (16°C)	• Wear laboratory coat over appropriate warm clothing
Sharp bone/plastic	• Wear enclosed shoes with full coverage of the dorsum of the foot	
Biological	Fungi, bacteria (tetanus), hepatitis B and C	• Have appropriate immunisation
Chemical	Formaldehyde	• Do not eat, drink or smoke in the Dissecting Room
Methanol	Methanol	• Do not place anything (e.g. pens, pencils) into your mouth
2-phenoxylethanol	2-phenoxylethanol	• Use disposable gloves when handling wet specimens and do not cross-contaminate models or bones with wet specimens
	Corrosive/Flammable	• Always wash hands with liquid soap and dry thoroughly with disposable paper towel before leaving
	Irritant/toxic	• Low concentrations of chemicals used
	Irritant	• Chemicals used in well ventilated area

Personal Protective Equipment required

- [] Closed in Footwear
- [] Lab. Coat
- [] Gloves

Emergency Procedures

In the event of an alarm sounding, stop the practical class and wait for confirmation to evacuate from demonstrators. Then wash your hands and pack up your bags. Follow the instructions of the demonstrators regarding exits and assembly points.

Clean up and waste disposal

- Cover wet specimens with the towels provided. Make sure that towels do not hang over the edge of the table, because this allows fluid to drip onto the floor. Fluids on the floor are a major safety hazard and should be reported to staff immediately.
- Replace stools under the tables in your cubicle.
- Remove your gloves and dispose in the biowaste bins provided.
- Wash your hands and instruments thoroughly with the soap provided and dry your hands with the paper towel.
- Remove your laboratory coat when you leave the dissecting room.

Ethics Approval

This type of practical has been previously considered and approved by the UNSW Human Research Ethics Advisory Panel (HREC09372).

Declaration

I have read and understand the safety requirements for this practical class and I will observe these requirements.

Signature: ____________________________ Date: ____________________________

Student number: ____________________________

ANAT-SRA-Med&SciStudent relates to RA-MED-06. Date for review: 1/2/2016
Course Schedule: Semester 1, 2015

<table>
<thead>
<tr>
<th>Date</th>
<th>Week</th>
<th>Lectures (Mon. 9-11am)</th>
<th>Laboratory Classes (Tues. 11am-2pm or 2:50pm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Mar</td>
<td>1</td>
<td>General Anatomy, General Skeletal System & Axial Bones</td>
<td>General Anatomy, General Skeletal System & Axial Bones</td>
</tr>
<tr>
<td>9 Mar</td>
<td>2</td>
<td>Appendicular Bones & The Articular System</td>
<td>Appendicular Bones & The Articular System</td>
</tr>
<tr>
<td>23 Mar</td>
<td>4</td>
<td>Lower Limb Muscles, General & Central Nervous System</td>
<td>Lower Limb Muscles, General & Central Nervous System</td>
</tr>
<tr>
<td>30 Mar</td>
<td>5</td>
<td>Peripheral Nervous System</td>
<td>Peripheral Nervous System</td>
</tr>
<tr>
<td>6 Apr</td>
<td>6</td>
<td>Eye & Ear</td>
<td>Eye & Ear</td>
</tr>
<tr>
<td>13 Apr</td>
<td>7</td>
<td>No Lectures</td>
<td>No Lectures</td>
</tr>
<tr>
<td>20 Apr</td>
<td>8</td>
<td>Revision Labs (9-11:30am & 11:30am-1pm)</td>
<td>Revision Labs (9-11:30am & 11:30am-1pm)</td>
</tr>
<tr>
<td>27 Apr</td>
<td>9</td>
<td>Cardiovascular System</td>
<td>Cardiovascular System</td>
</tr>
<tr>
<td>4 May</td>
<td>10</td>
<td>Respiratory System</td>
<td>Respiratory System</td>
</tr>
<tr>
<td>11 May</td>
<td>11</td>
<td>Digestive System</td>
<td>Digestive System</td>
</tr>
<tr>
<td>18 May</td>
<td>12</td>
<td>Female & Male Reproductive Systems</td>
<td>Female & Male Reproductive Systems</td>
</tr>
<tr>
<td>1 Jun</td>
<td></td>
<td>No Lectures</td>
<td>No Lectures</td>
</tr>
<tr>
<td>8 Jun</td>
<td></td>
<td>Revision Labs (9-11:30am & 11:30am-1pm)</td>
<td>Revision Labs (9-11:30am & 11:30am-1pm)</td>
</tr>
</tbody>
</table>