THE UNIVERSITY OF NEW SOUTH WALES

School of Medical Sciences
Department of Pathology
Course Outline
PATH3207
Musculoskeletal Diseases
2014
Preface

This is the eleventh edition of the manual for Musculoskeletal Diseases produced by the staff of the Department of Pathology at the University of New South Wales. It contains a large amount of relevant information regarding the course PATH3207 Musculoskeletal Diseases.

We recognise that this manual might contain some errors and may need further improvements in the future. Therefore, we welcome comments from staff and students and seek your co-operation in identifying errors of content or style, so that they may be corrected in subsequent editions.

Editors:
A/Prof Nicodemus Tedla
A/Prof Gary Velan
Table of Contents

Preface...i
Introduction..1
Official Communication by email ..2
Course Outline ...3
 Campus Based Course staff ..3
 Course Administration ...3
 Student Support Service ..3
 Course Details ...3
 Course Objectives ...3
 Student Learning Outcomes ...4
 Graduate Attributes ..4
 Rationale for the Inclusion of Content and Teaching Approach ...4
 Teaching Strategies ..4
 Recommended Text ...5
 Research Opportunities ...5
 Course Evaluation and Development ..5

Course Schedule ..6

Lecture Program Outline ..8

Guide to Practical Classes ...10
 A simple guide to description of macroscopic specimens (“pots”)10
 A simple guide to writing histopathological descriptions ...11

Team-based learning ...12

Evidence based symposium ...13
 Format for Evidence Based Symposium Written Abstract ...13
 Evidence Based Symposium assessment forms ..14

Revision Quiz On-line ...17

Assessments ..18

Sample Examination Paper ...19
 PART A (25 Marks) ...19
 PART B (20 marks) ..19
Resources for Students ... 21
 Additional Learning Resources .. 21
 PATH 3207 Moodle course .. 21
 On-line lectures .. 21
 PATH3207 Virtual slide box and images .. 21
 Images of Disease (IOD) database .. 22
 Interactive images of disease .. 22
 The Museum of Human Disease ... 22

Administrative Matters .. 24

Academic Honesty and Plagiarism .. 25

Teaching Laboratories Risk Assessments ... 27
Introduction

We would like to warmly welcome third year science students to the Musculoskeletal Diseases course, offered in Session 2, 2014, by the Department of Pathology. The course covers bone and joint disease, neuromuscular disease, musculoskeletal trauma and orthopaedics.

This course will be beneficial to students wishing to pursue careers in the health sciences, especially rehabilitation medicine. A sound understanding of musculoskeletal pathology should provide an effective framework from which to approach diagnosis and management of common clinical scenarios that you may well encounter in your future careers.

Staff of the Department of Pathology joins me in wishing you an interesting and enjoyable session.

Nicodemus Tedla
A/Professor in Pathology – PATH3207 Course Convenor
Official Communication by email

All students in course PATH3207 are advised that email is now the official means by which the School of Medical Sciences at UNSW will communicate with you. All email messages will be sent to your official UNSW email address (e.g., z1234567@student.unsw.edu.au) and, if you do not wish to use the University email system, you MUST arrange for your official mail to be forwarded to your chosen address. The University recommends that you check your mail at least every other day. Facilities for checking email are available in the School of Medical Sciences and in the University library. Further information and assistance is available from DIS-Connect, Tel 9385 1777. The UNSW Library runs free email courses.
Course Outline

Campus Based Course staff

A/Professor N Tedla (Course Convenor), Dr P Polly, A/Professor G Velan (Head of Teaching in Pathology), Professor N Hawkins (Head of School), Professor R Kumar, Dr M Dziegielewski, Dr S Van Es, Dr C Van Vliet Dr T Grassi and Dr M Meerkin.

Course Administration

Administrative and general problems related to your attendance, or the content and conduct of the course, can in the first instance be addressed by consulting A/Prof Nicodemus Tedla by e-mail (n.tedla@unsw.edu.au) and in the second instance be addressed by consulting A/Prof Gary Velan (g.velan@unsw.edu.au). Students wishing to see their tutors or other members of staff should call in at the School office (ground floor) and make an appointment with the assistance of the staff.

Attendance is mandatory at the lectures and practical classes in this course. Students that fail to attend >80% of the lectures tutorials and practical classes may not be allowed to complete the course.

Guidelines on extra-curricular activities affecting attendance are found at:

If students have difficulties of a personal nature, they should contact the School’s Grievance Officer, Dr P. Pandey (p.pandey@unsw.edu.au) or Professor Nick Hawkins, the Head of School.

If a student(s) want to have a result reviewed (checking of marks and/or reassessment), they should formally apply through https://my.unsw.edu.au/student/academiclife/assessment/Results.html

To appeal academic standing or ability to progress visit

Should you feel that there are particular circumstances that have affected your performance in the course; you should lodge an application for special consideration. Special considerations sought outside the 3 day rule will not be accepted except under TRULY exceptional circumstances. The procedures involved in this are outlined in the UNSW Student Guide, and special forms are widely available on campus e.g. Student Health Centre, Student Centre or at https://my.unsw.edu.au/student/atoz/SpecialConsideration.html

Information on the different research units in the Department of Pathology and the research interests of each staff member is available at Department of Pathology’s home page at http://medicalsciences.med.unsw.edu.au/

Student Support Service

Those students who have a disability that requires some adjustment in their teaching or learning environment are encouraged to discuss their study needs with the course convenor prior to, or at the commencement of, their course, or with the Equity Officer (Disability) in the Equity and Diversity Unit (9385 4734 or www.equity.unsw.edu.au/disabil.html). Issues to be discussed may include access to materials, note-takers, the provision of services and additional exam and assessment arrangements. Early notification is essential to enable any necessary adjustments to be made. Information on designing courses and course outlines that take into account the needs of students with disabilities can be found at:

Any student experiencing difficulty with the course should discuss this either with the Convenor of PATH3207 A/Prof Tedla, or the Head of Department A/Prof G. Velan.

Course Details

This course is offered during Session 2 and carries six units of credit. Successful completion of an introduction to basic diseases processes in second year (PATH 2201 or PATH 2202) and in basic Histology (ANAT 2511) and Anatomy (ANAT 2111, ANAT 1521 or ANAT 2241) are prerequisites for enrolment in the course. Molecular basis of inflammation and infection in third year (PATH 3205) is highly recommended. Attendance to all tutorials, practical classes and to more than 80% of the lectures is mandatory.

Course Objectives

PATH 3207 comprises teaching current concepts of musculoskeletal diseases including arthritis, metabolic bone diseases, neoplasms in bone, causes of musculoskeletal pain and limitations of movement and neuromuscular diseases as well as detailed coverage of fracture healing and its complications, multiple traumas and of biomaterial and prosthetic devices relevant to orthopaedic applications.
Student Learning Outcomes

At the completion of this course you should be able to:

1. Describe and explain the molecular and cellular pathogenic mechanisms of musculoskeletal and neuromuscular diseases;
2. Describe the macroscopic and microscopic appearances of musculoskeletal and neuromuscular diseases;
3. Correlate the clinical features of musculoskeletal and neuromuscular diseases with the underlying pathological processes and mechanisms;
4. Describe the sensitivity, specificity, cost effectiveness and availability of laboratory and imaging investigations for the diagnosis of musculoskeletal diseases;
5. Discuss recent advances in biomedical, bioengineering, molecular and biological research related to the treatment of musculoskeletal and neuromuscular diseases;
6. Develop written and oral skills in scientific communication;
7. Develop skills in peer review and assessment of scientific research.

Graduate Attributes

The students will be encouraged to develop the following Graduate Attributes by undertaking the selected activities and knowledge content. These attributes will be assessed within the prescribed assessment tasks. Please see the Assessment section for more details:

1. An in-depth engagement with the relevant disciplinary knowledge in its interdisciplinary context.
2. The capacity for analytical and critical thinking, as well as for creative problem solving.
3. The ability to engage in independent, team-based and reflective learning.
4. The skills of effective communication.

Rationale for the Inclusion of Content and Teaching Approach

The intended learning outcomes are achieved through study of the common patterns of response to injury, which are often referred to as pathological processes. In depth study of mechanisms and causes unique to the musculoskeletal system are highlighted in context of the general pathological processes. To understand these processes, you will draw on your knowledge of normal anatomy, histology, biochemistry, physiology, general pathology and biomedical engineering.

This course will be beneficial to students wishing to pursue careers in the health sciences, especially in clinical rehabilitation medicine, biomedical research or hospital-based laboratory work. A sound understanding of musculoskeletal pathology should provide an effective framework from which to approach diagnosis and management of common clinical scenarios that you may well encounter in your future careers.

Teaching Strategies

The course employs a variety of teaching modes in order to facilitate your learning:

1. A series of lectures introduce you to pathological processes, as well as specific examples of those processes affecting the musculoskeletal system. These lectures are given by invited and campus based discipline experts.
2. Tutorials that are designed in a form of team-based collaborative learning that incorporate small group tutorials and a series of topical quizzes to be completed individually and as a team. It is anticipated that students will have an enhanced learning experience through the use of team-based learning and peer teaching. The tutorials intended to extend and amplify your understanding of material presented in lectures in an interactive format, where you are given opportunities to seek clarification on any aspect of the topics covered, as well as to tackle concepts that might be difficult to grasp.
3. Practical classes that incorporate clinico-pathological correlation sessions are intended to allow you to apply your understanding of disease processes to microscopic and macroscopic appearances of disease in tissues (lesions), and to correlate these with the clinical manifestations. Computer-based virtual microscopy is utilised together with a variety of diagnostic imaging modalities and laboratory investigations, in order to permit correlation between disease processes, changes in cells and tissues at the microscopic level and the clinical manifestations of disease.
4. Evidence based symposia based on cutting edge topics in musculoskeletal diseases that are organised, designed, delivered and assessed by students working in small groups.
5. A midsession written exam with group and individual feedback aimed at familiarising students with the end of the year practical and written exams and providing students with tailored feedback.
6. Two sessions of group discussion/feedback on homework tasks, the midsession exam and specific student questions.
7. Learning is supported via an eLearning Moodle module (accessible via student number and zPass at https://moodle.telt.unsw.edu.au/). Announcements, timetables, lecture slides and other resources will be made available during the course.
8. The PATH3207 Student Manual contains specific learning objectives for tutorials and practical classes, together with the course timetable and useful background information.

Recommended Text

You are expected to use the following text available online via the UNSW library Sirius website at http://sirius.library.unsw.edu.au (zID and zPass required). Search for the database MD Consult, then search for Robbins Basic Pathology. Robbins Basic Pathology. 9th edition. V. Kumar, A.K. Abbas, & J.C. Aster (2012). Saunders & Co. Philadelphia PA; Elsevier Saunders.

Robbins and Cotran Pathologic Basis of Disease 8th edition. V. Kumar, A.K. Abbas & N. Fausto (2010) Elsevier Saunders is highly recommended for students wishing to study the molecular biology or clinical features of diseases in greater depth.

Research Opportunities

Opportunities exist for all students wishing to undertake undergraduate and postgraduate research program within the School of Medical Sciences. Information can be accessed via the Faculty of Medicine directory for the School of Medical Sciences at: http://notes.med.unsw.edu.au/home/medweb.nsf/website/5.1.MedicalSciences?OpenDocument

Students are also encouraged to communicate with invited guest lecturers that are active in research and clinical practice.

Course Evaluation and Development

Periodically student evaluative feedback on the course is gathered, using UNSW’s Course and Teaching Evaluation and Improvement (CATEI) Process and an in-house course evaluation questionnaire. This questionnaire is included in the manual to be completed by all students during Practical Class 11 (week 11) to provide feedback on the course. Student feedback is taken seriously, and continual improvements are made to the course based in part on such feedback.
Course Schedule

<table>
<thead>
<tr>
<th>Week</th>
<th>Date</th>
<th>Time</th>
<th>Location</th>
<th>Lecturer</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>30/7/2014</td>
<td>11</td>
<td>LG02</td>
<td>de Permentier</td>
<td>Lecture - Revision of Bone and Joint Histology</td>
</tr>
<tr>
<td></td>
<td>31/7/2014</td>
<td>13</td>
<td>LG02</td>
<td>Kumar</td>
<td>Lecture - Pathological Basis of Bone/Joint pain and limitation of movement</td>
</tr>
<tr>
<td>01/8/2014</td>
<td>10</td>
<td>WW G6/G7</td>
<td>Tedla/Goh/ W-Harvey/Zarzour</td>
<td>Practical - Histology of Bone and Joints</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>06/8/2014</td>
<td>11</td>
<td>LG02</td>
<td>Tedla</td>
<td>Lecture - Fracture Healing I</td>
</tr>
<tr>
<td></td>
<td>07/8/2014</td>
<td>13</td>
<td>LG02</td>
<td>Tedla</td>
<td>Lecture - Fracture Healing II</td>
</tr>
<tr>
<td>08/8/2014</td>
<td>10</td>
<td>WW G6/G7</td>
<td>Tedla/Goh/ W-Harvey/Zarzour</td>
<td>Practical - Histopathology of Fractures</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>13/8/2014</td>
<td>11</td>
<td>LG02</td>
<td>Tedla</td>
<td>Prelude to evidence-based symposium</td>
</tr>
<tr>
<td></td>
<td>14/8/2014</td>
<td>13</td>
<td>LG02</td>
<td>Grassi</td>
<td>Lecture – Differential diagnosis of back pain</td>
</tr>
<tr>
<td>4</td>
<td>20/8/2014</td>
<td>11</td>
<td>LG02</td>
<td>Dziegielewski</td>
<td>Lecture - Bone Tumours I</td>
</tr>
<tr>
<td></td>
<td>21/8/2014</td>
<td>13</td>
<td>LG02</td>
<td>Dziegielewski</td>
<td>Lecture - Bone Tumours II</td>
</tr>
<tr>
<td>22/8/2014</td>
<td>9</td>
<td>WW G6/G7 WW G16/G17</td>
<td>Tedla/Goh/ W-Harvey/Zarzour</td>
<td>Tutorial - Primary and Secondary Bone Tumours</td>
<td></td>
</tr>
<tr>
<td>22/8/2014</td>
<td>10</td>
<td>WW G6/G7</td>
<td>Tedla/Goh/ W-Harvey/Zarzour</td>
<td>Practical - Histopathology of Bone Tumours</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>27/8/2014</td>
<td>11</td>
<td>LG02</td>
<td>McNeil</td>
<td>Lecture - Arthritis I</td>
</tr>
<tr>
<td></td>
<td>28/8/2014</td>
<td>13</td>
<td>LG02</td>
<td>McNeil</td>
<td>Lecture - Arthritis II</td>
</tr>
<tr>
<td>29/8/2014</td>
<td>10</td>
<td>WW G6/G7</td>
<td>Kumar/Goh/ W-Harvey/Zarzour</td>
<td>Practical - Histopathology of Arthritis and Clinical correlations</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>03/9/2014</td>
<td>11</td>
<td>LG02</td>
<td>Vu</td>
<td>Lecture – Strains, Sprains and Dislocations</td>
</tr>
<tr>
<td></td>
<td>04/9/2014</td>
<td>13</td>
<td>LG02</td>
<td>Morris</td>
<td>Lecture - Diagnostic Imaging of Musculoskeletal Diseases</td>
</tr>
<tr>
<td></td>
<td>05/9/2014</td>
<td>9</td>
<td>WW G6/G7</td>
<td></td>
<td>MIDSESSION EXAM</td>
</tr>
<tr>
<td>7</td>
<td>10/9/2014</td>
<td>11</td>
<td>LG02</td>
<td>Duflou</td>
<td>Lecture - Forensic Pathology of the Musculoskeletal System</td>
</tr>
<tr>
<td></td>
<td>11/9/2014</td>
<td>13</td>
<td>LG02</td>
<td>McFarland</td>
<td>Lecture - New approaches in Musculoskeletal Repair</td>
</tr>
<tr>
<td>12/9/2014</td>
<td>10</td>
<td>WW G6/G7</td>
<td>Tedla/Goh/ W-Harvey/Zarzour</td>
<td>Revision – Homework Tasks</td>
<td></td>
</tr>
<tr>
<td>Week</td>
<td>Date</td>
<td>Time</td>
<td>Location</td>
<td>Lecturer</td>
<td>Title</td>
</tr>
<tr>
<td>------</td>
<td>----------</td>
<td>------</td>
<td>----------</td>
<td>------------------</td>
<td>--</td>
</tr>
<tr>
<td>8</td>
<td>17/9/2014</td>
<td>11</td>
<td>LG02</td>
<td>Tedla/Herbert</td>
<td>Evidence-based symposium</td>
</tr>
<tr>
<td></td>
<td>17/9/2014</td>
<td>11</td>
<td>Biomed ThF</td>
<td>Polly/Velan</td>
<td>Evidence-based symposium</td>
</tr>
<tr>
<td></td>
<td>18/9/2014</td>
<td>13</td>
<td>LG02</td>
<td>Tedla/Velan</td>
<td>Evidence-based symposium</td>
</tr>
<tr>
<td></td>
<td>18/9/2014</td>
<td>13</td>
<td>Biomed ThF</td>
<td>Polly/Herbert</td>
<td>Evidence-based symposium</td>
</tr>
<tr>
<td></td>
<td>19/9/2014</td>
<td>9</td>
<td>Biomed ThA</td>
<td>Tedla/Herbert</td>
<td>Evidence-based symposium</td>
</tr>
<tr>
<td></td>
<td>19/9/2014</td>
<td>9</td>
<td>Biomed ThC</td>
<td>Polly/Velan</td>
<td>Evidence-based symposium</td>
</tr>
<tr>
<td></td>
<td>19/9/2014</td>
<td>10</td>
<td>Biomed ThA</td>
<td>Tedla/Herbert</td>
<td>Evidence-based symposium</td>
</tr>
<tr>
<td></td>
<td>19/9/2014</td>
<td>10</td>
<td>Biomed ThC</td>
<td>Polly/Velan</td>
<td>Evidence-based symposium</td>
</tr>
<tr>
<td>9</td>
<td>24/9/2014</td>
<td>11</td>
<td>LG02</td>
<td>Meerkine</td>
<td>Lecture – Metabolic Bone Diseases</td>
</tr>
<tr>
<td></td>
<td>25/9/2014</td>
<td>13</td>
<td>LG02</td>
<td>Buckland</td>
<td>Lecture - Pathological basis of neuromuscular diseases</td>
</tr>
<tr>
<td></td>
<td>26/9/2014</td>
<td>9</td>
<td>WW G6/G7</td>
<td>Goh/WW G16/G17</td>
<td>Tutorial – Metabolic Bone Diseases</td>
</tr>
<tr>
<td></td>
<td>26/9/2014</td>
<td>10</td>
<td>WW G6/G7</td>
<td>Meerkin/Goh/WW</td>
<td>Practical – Clinico-pathological correlations of metabolic Bone Diseases</td>
</tr>
<tr>
<td>Midsession Break</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>08/10/2014</td>
<td>11</td>
<td>LG02</td>
<td>Polly</td>
<td>Lecture - Muscular Dystrophies</td>
</tr>
<tr>
<td></td>
<td>09/10/2014</td>
<td>13</td>
<td>LG02</td>
<td>Velan</td>
<td>Lecture – Pathogenesis of Shock</td>
</tr>
<tr>
<td></td>
<td>10/10/2014</td>
<td>9</td>
<td>WW G6/G7</td>
<td>Polly/Shum</td>
<td>Combined Tutorial and Practical - Muscle Diseases</td>
</tr>
</tbody>
</table>

Online Revision Quiz with Automated Feedback Opens on 13/10/2014

<table>
<thead>
<tr>
<th>Week</th>
<th>Date</th>
<th>Time</th>
<th>Location</th>
<th>Lecturer</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>15/10/2014</td>
<td>11</td>
<td>LG02</td>
<td>Dziegielewski</td>
<td>Lecture - Head Injury</td>
</tr>
<tr>
<td></td>
<td>16/10/2014</td>
<td>13</td>
<td>LG02</td>
<td>Bowring</td>
<td>Lecture - Rehabilitation of Neuro-Musculoskeletal Diseases</td>
</tr>
<tr>
<td></td>
<td>17/10/2014</td>
<td>9</td>
<td>WW G6/G7</td>
<td>Tedla/Goh/WW</td>
<td>Combined Tutorial and Practical - Head injury and Shock</td>
</tr>
<tr>
<td></td>
<td>22/10/2014</td>
<td>11</td>
<td>LG02</td>
<td>Krishnan</td>
<td>Lecture – Pathological Basis of Upper and Lower Motor Neuron Lesions</td>
</tr>
<tr>
<td></td>
<td>23/10/2014</td>
<td>13</td>
<td>LG02</td>
<td>TBA</td>
<td>Lecture – Where to from here: discussion on career options</td>
</tr>
<tr>
<td></td>
<td>24/10/2014</td>
<td>9</td>
<td>WW G6/G7</td>
<td>Tedla</td>
<td>Revision - Homework Tasks</td>
</tr>
<tr>
<td></td>
<td>31/10/2014</td>
<td>9</td>
<td>WW G6/G7</td>
<td>Tedla</td>
<td>Practical Examination</td>
</tr>
</tbody>
</table>

Online Revision Quiz with Automated Feedback Closes on 27/10/2014

NOTE: Any changes in timetable will be announced on Moodle at https://moodle.telt.unsw.edu.au/
Lecture Program Outline

<table>
<thead>
<tr>
<th>Lecture Title</th>
<th>Lecturer</th>
<th>Content outline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Revision of bone and joint histology</td>
<td>PD</td>
<td>Types of bones and joints, histology of synovial joint, microarchitecture of bone, processes of bone formation and bone remodelling</td>
</tr>
<tr>
<td>Pathological bases of bone/joint pain and limitation of movement</td>
<td>RKK</td>
<td>Aetiology, pathogenesis and diagnosis of bone and joint pain</td>
</tr>
<tr>
<td>Fracture healing I</td>
<td>NT</td>
<td>Types of fractures, stages of fracture healing, determinants of traumatic fracture healing and assessment of bone healing</td>
</tr>
<tr>
<td>Fracture healing II</td>
<td>NT</td>
<td>Acute, intermediate and chronic complications of fractures</td>
</tr>
<tr>
<td>Prelude to evidence-based symposium</td>
<td>NT</td>
<td>Introduction to the protocols and guidelines of the symposium, selection of topics and outline of timetable</td>
</tr>
<tr>
<td>Differential diagnosis of back pain</td>
<td>TG</td>
<td>Aetiology and pathogenesis back pain: Comparison of intervertebral disc diseases, degenerative joint diseases, and inflammatory arthropathies and non-skeletal causes of back pain.</td>
</tr>
<tr>
<td>Bone Tumours I</td>
<td>MD</td>
<td>Types of bone tumours, macro and microscopic features, clinical features and complications</td>
</tr>
<tr>
<td>Bone Tumours II</td>
<td>MD</td>
<td>Metastases to bone; sources of metastases, histopathological features; Involvement of the bone in haematological malignancies</td>
</tr>
<tr>
<td>Arthritis I</td>
<td>PMcN</td>
<td>Rheumatoid arthritis: Aetiology, pathogenesis, clinical features, diagnosis and complications</td>
</tr>
<tr>
<td>Arthritis II</td>
<td>PMcN</td>
<td>Causes of arthritis; pathogenesis and clinical features of osteoarthritis and crystal induced arthropathies</td>
</tr>
<tr>
<td>Strains, sprains and dislocations</td>
<td>DV</td>
<td>Clinical evaluation of muscle, tendon, ligament and meniscus injuries with special emphasis to shoulder and elbow dislocation and knee and ankle injuries.</td>
</tr>
<tr>
<td>Diagnostic imaging of musculoskeletal diseases</td>
<td>SM</td>
<td>An outline of types of imaging techniques available for musculoskeletal diseases and their indications, cost, advantages and disadvantages</td>
</tr>
<tr>
<td>Forensic pathology of musculoskeletal system</td>
<td>JD</td>
<td>Medico-legal relevance of investigation of death; Comparisons of coronial and hospital autopsy; Forensic investigation of musculoskeletal injuries</td>
</tr>
<tr>
<td>New approaches to musculoskeletal repair</td>
<td>CM</td>
<td>Summary on a cutting edge research on new approaches in treatment of musculoskeletal damages</td>
</tr>
<tr>
<td>Metabolic bone disease</td>
<td>MM</td>
<td>Classification; macroscopic, microscopic, radiological and clinical features; complications</td>
</tr>
<tr>
<td>Pathological basis of neuromuscular diseases</td>
<td>MB</td>
<td>Clinical and histo-pathological features of myopathy, myosthenic disorders, and neurogenic disorders resulting in muscle disease; investigation of muscle diseases and indications for muscle biopsy.</td>
</tr>
<tr>
<td>Muscular dystrophies</td>
<td>PP</td>
<td>Causes and effects of muscular dystrophies, histo-pathological diagnosis and indications for muscle biopsies</td>
</tr>
<tr>
<td>Rehabilitation of musculoskeletal diseases</td>
<td>GB</td>
<td>Outline indications, general approaches and effectiveness of rehabilitation programs in common Neuro-Musculo-Skeletal diseases; Discuss cost effectiveness of rehabilitation.</td>
</tr>
<tr>
<td>Pathogenesis of shock</td>
<td>GV</td>
<td>Definition, pathophysiology, causes and effects</td>
</tr>
<tr>
<td>Head injury</td>
<td>MD</td>
<td>Intracranial haemorrhage-epidural, subdural, subarachnoid, intracerebral: causes and effects</td>
</tr>
<tr>
<td>Upper and lower motor neuron lesions</td>
<td>AK</td>
<td>Pathological basis of UMN and LMN lesions, compare and contrast clinical manifestations and discuss underlying pathogenesis</td>
</tr>
<tr>
<td>Name</td>
<td>Title / Position</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>Bowring</td>
<td>Dr Greg Bowring Senior lecturer, FAFRM (RACP), UNSW; Staff Specialist, POWH</td>
<td></td>
</tr>
<tr>
<td>Buckland</td>
<td>A/Prof Michael Buckland MBBS PhD FRCPath, Head Neuropathology, Royal Prince Alfred Hospital, SydU</td>
<td></td>
</tr>
<tr>
<td>Dziegielewski</td>
<td>Dr Mark Dziegielewski Lecturer, SOMS, Department of Pathology, UNSW</td>
<td></td>
</tr>
<tr>
<td>Grassi</td>
<td>Dr Tanya Grassi Lecturer, SOMS, Department of Pathology, UNSW</td>
<td></td>
</tr>
<tr>
<td>Hawkins</td>
<td>Prof Nicolas Hawkins Professor, Head of SOMS, Department of Pathology, UNSW</td>
<td></td>
</tr>
<tr>
<td>Krishnan</td>
<td>A/Prof Arun Krishnan A/Prof, SOMS, Department of Neurophysiology, UNSW</td>
<td></td>
</tr>
<tr>
<td>Kumar</td>
<td>Prof Rakesh Kumar Professor, SOMS, Department of Pathology, UNSW</td>
<td></td>
</tr>
<tr>
<td>McFarland</td>
<td>A/Prof Clive McFarland A/Professor, Graduate School of Biomedical Engineering, UNSW</td>
<td></td>
</tr>
<tr>
<td>McNeil</td>
<td>Prof HP McNeil Professor of Rheumatology, UNSW and SWAHS, Liverpool Hospital</td>
<td></td>
</tr>
<tr>
<td>Meerkin</td>
<td>Dr Mathew Meerkin Senior lecturer, SOMS, Department of Pathology, UNSW</td>
<td></td>
</tr>
<tr>
<td>Morris</td>
<td>Dr Sarah Morris Senior lecturer, Department of Radiology, POWH</td>
<td></td>
</tr>
<tr>
<td>Polly</td>
<td>Dr Patsie Polly Senior lecturer, Department of Pathology, UNSW</td>
<td></td>
</tr>
<tr>
<td>Tedla</td>
<td>A/Prof Nicodemus Tedla A/Professor, Department of Pathology, UNSW</td>
<td></td>
</tr>
<tr>
<td>Velan</td>
<td>A/Prof Gary Velan A/Professor, SOMS, Department of Pathology, UNSW</td>
<td></td>
</tr>
<tr>
<td>Vu</td>
<td>Dr Dzung Vu Senior Lecturer, SOMS, Department of Anatomy, UNSW</td>
<td></td>
</tr>
</tbody>
</table>
A simple guide to description of macroscopic specimens (“pots”)

The best approach to the study of macroscopic specimens in the Museum is to be systematic. As you cover each lecture topic this year, you should make it a point to visit the Museum to become familiar with macroscopic examples of that disease process, and other related conditions. One of the major tasks for you will be to learn how to differentiate with the naked eye between disease processes that at first glance have similar appearances. Sometimes this cannot be accomplished even by close examination, in which case you should formulate a list of differential diagnoses, in order of decreasing likelihood. All this takes time and careful attention to honing your skills of observation in the Museum. In addition to the specimens and related conditions covered during practical classes, you are expected to cover all specimens in Bay 6, Bay 16, Bay 17 and Bay 29.

1) Anatomical description

Almost all macroscopic specimens will contain sufficient “normal” tissue for you to identify the organ(s) of origin. Hence a good appreciation of normal anatomy is required (i.e. pathology requires integration with your previous studies). Knowledge of the normal dimensions of organs is important in order to comment on pathological enlargement, distortion or shrinkage of tissue. The way in which the tissue has been mounted is also relevant. For example, bones are usually kept intact or cut longitudinally to display abnormalities in the bone marrow and medulla.

2) Description of the lesion(s)

A “lesion” is a recognisable abnormality in an organ or tissue caused by injury or disease. Lesions can be subclassified into “focal” (localised), “multifocal” and “diffuse” (an abnormality of the entire organ or tissue). An example of a focal lesion is a tumour in the lower part of the femur. You should describe focal lesions as you would describe a lump in a surgical patient, e.g. “There is a mass lesion 5 cm in diameter above the knee, pushing the periosteum and extending to the overlying muscle. The mass is predominantly solid and whitish in colour, with focal areas of brown-red discoulouration (haemorrhage) and softening (necrosis).”

3) Identification of the major pathological process

Once you obtain a basic knowledge of the classification of disease, it is possible to categorise abnormalities in tissue as traumatic, inflammatory (acute or chronic), vascular (thrombosis, embolism, infarction, haemorrhage), disorders of growth (atrophy, hyperplasia, hypertrophy, hamartoma, neoplasia - benign or malignant, primary or metastatic), metabolic or degenerative. For example, the qualities of the bone lesion described above are typical of a primary malignant tumour - a single, abnormal, invasive mass that has overgrown the surrounding tissue, with areas of necrosis and haemorrhage (indicative of rapid growth).

4) Related lesions and complications

It is important to integrate your description with your theoretical knowledge of disease causation and complications. For example, wrinkled skin (solar elastosis) surrounding a skin cancer on the back of the hand is caused by the same agent as the tumour - ultraviolet radiation. In the above example, it is important to note whether the bone tumour has been complicated by invasion to the blood vessels and or spread to other bones (as osteosarcomas often do), because this has prognostic implications.

5) Anatomical diagnosis

The diagnosis is no longer a guessing game once you become aware of the basic pathological principles - your description justifies the selection of which pathological process(es) are operative, which you then relate to the anatomy and to your knowledge of the natural history of disease to formulate a tissue diagnosis. In the above example, the diagnosis is “primary osteosarcoma of the lower femur, complicated by metastases to the vertebrae”.

© Department of Pathology 2014
Remember: Your descriptive skills will only improve with practice. It is recommended that students work through the Museum in pairs or small groups - one student is armed with a textbook, lecture notes and Museum catalogue, while the other(s) act as “the guinea pig” and are required to describe and identify the specimens. Be warned: it is useless for you to look at a number on a specimen, refer to that number in the Museum catalogue and learn it by rote. That is not an approach befitting thoughtful prospective professionals. It is much better to look carefully at a specimen, attempt to identify the disease process, justify your diagnosis, and only then refer to the catalogue, textbook and lecture notes. In the event that you are unable, even after careful thought and referral to the text, to work out why a particular diagnosis was made, then you should ask your tutor at a convenient time.

A simple guide to writing histopathological descriptions

Haematoxylin and eosin are used for staining all routine sections, and special stains are used only to confirm or refute the presence of a particular substance in the tissue. In addition, histochemistry, immunohistochemistry and electron microscopy may be used extensively in the hospital situation to confirm a clinical diagnosis. Haematoxylin is preferentially taken up by nucleic acids and stains them blue, hence any highly cellular tissue will appear blue (basophilic). Other sources of basophilia include hyaline cartilage, calcium salts and bacterial colonies. Eosin is preferentially taken up by proteins, hence any proteinaceous tissue will appear pink (eosinophilic). Clear spaces may be caused by fat (washed out by aqueous fixatives), water or air. If you have an atlas of histology you may find it useful at these classes. We assume that you are acquainted with the normal histological appearances of human tissues - if not, revise this prior to examining the histopathology slides.

Armed with the basics outlined above, it is possible to write a histopathological description, which should possess the following components:

1) Anatomical and General Description

- **Draw a simple sketch of the main features** to remind you of these areas when you look at the screen or look down at the microscope. This can be used to clarify your description, e.g. area A in the sketch is strongly eosinophilic and is an area of haemorrhage, B is palely eosinophilic and is an area of fibrosis, etc.

- **Make a general statement that both identifies the tissue and indicates whether the lesion is focal or diffuse.** For example, "Slide 44 is a 2 X 2 cm section of peripheral lung tissue (i.e. it contains no major bronchi) including one pleural surface that contains a focal basophilic lesion labelled area A. The surrounding normal lung tissue is labelled area B." Or "Slide 25 is a section through the left ventricle measuring 2 X 1.5 cm including pericardium, myocardium and endocardium. The tissue is diffusely abnormal."

2) Description of the Major Lesion and Identification of the Major Pathological Process

- These elements require a thorough appreciation of the entirety of the section. Such an appreciation cannot be achieved by using only the 40X objective, which will result in failure to see the forest for the trees. Remember the following maxim: Use a low-power objective and a high-powered mind (not vice versa)!

- Avoid the trap of describing each abnormal feature in the order that you discover it, without any regard to its relationship to the totality of the lesion. That is, your description requires prior thought, interpretation and planning. By all means jot down your observations on scrap paper, but then order them (so as to exhibit your understanding of "the big picture"). The major pathological process (e.g. acute inflammation, malignant neoplasia) should then become obvious to the informed reader even before you have named it.

3) Identification of Related Lesions

- Sections may contain abnormalities that either share a common aetiology with or predispose to the major lesion (e.g. solar damage to dermal collagen in skin adjoining a melanoma), or else complicate the main lesion (e.g. invasion of dermal lymphatic vessels by melanoma cells). Linking of these elements requires an alert mind (which we hope you already possess) and an understanding of the natural history of disease (which you will acquire with study). Some complications are so important that it is necessary to comment on their absence (e.g. lymphatic or venous invasion by malignant neoplasms).

4) Tissue Diagnosis

- This should bring together the anatomy, major lesion and any related lesions in a concise fashion with the use of all relative descriptive adjectives (e.g. chronic osteomyelitis with multiple areas of acute inflammation and bacteria).
Team-based learning

At the commencement of this course you will be divided into four tutorial groups and each tutorial group will be subdivided into four teams, each consisting of six students. Each team will have a mixture of abilities and backgrounds. The aim of this teaching approach is to enhance your learning experience through the use of individual and team quizzes and peer-teaching and discussions.

The role of the tutor is not to give you another lecture; but to facilitate your interactive discussions and assist you clarify some challenging concepts presented in your lectures, practical classes and/or text books. You are therefore strongly urged to make adequate preparation for these tutorials and encouraged to participate. Attendance at all these tutorials is mandatory and is assessable.

Pre-reading will be allocated prior to each tutorial. Each tutorial will commence with a quiz (based on the pre-reading), which will first be attempted individually and the answers submitted to your tutor. The same quiz questions will then be attempted in teams, with each team submitting their consensus answers. The tutor will guide you through the answers, encourage discussion and provide clarifications regarding of the challenging questions and concepts. Some of the tutorials will have additional tasks to be completed on a worksheet in your course manual. Please bring your course manual to all the tutorials and practical classes.

You will receive a maximum of 2% towards your final course mark for each tutorial quiz, comprising 1% for your individual performance and 1% for your group’s performance. Over the course of 5 tutorials, this will contribute up to 10% of your final mark.

The names in each tutorial group and team will be posted on Moodle at https://moodle.telt.unsw.edu.au/. The same teams will work together to develop presentations for the Evidence-Based Symposium.
Evidence based symposium

The evidence based symposium is a collection of group presentations on cutting-edge topics in musculoskeletal diseases. These presentations are aimed to enhance students’ skills in team work, effective communication and peer-review processes in line with learning outcomes 5, 6 and 7 described in the Course Outline.

The selection of topics will take place in week 3, **Wednesday 13th of August 2014**. On this day teams will be allocated a random topic by a lottery from a pool of relevant topics.

Students will submit a 400 word Abstract by e-mail to n.tedla@unsw.edu.au in week 6, no later than 5 pm on **3rd of September 2014**. This abstract will outline each team’s forthcoming presentation in week 8. **Please follow the strict Abstract format outlined below.** Late submission and/or inappropriately formatted abstracts will not be accepted.

In week 8, each team of students will give a 10-minute (maximum) group presentation followed by an additional 5 minutes for question time as part of a symposium. Several one hour sessions will be set aside for students to present their work to the rest of the group. Presentation style is at the discretion of each group (examples include PowerPoint presentations, Video, You Tube, role play, Interview, etc.). Groups can choose their spokesperson beforehand, although all students are expected to contribute equally and the performances of each individual may affect the group’s overall score. The presentation will need to be supported by a thorough literature review. At the end of the presentation, questions can be asked to any member of the group by students and members of academic staff.

15% of the final mark for the course is allocated for this task, of which 2.5% will be determined by members of the group, who will provide their collective score for each group member at the end of their presentation. 2.5% will be determined by peers in the audience and 10% will be allocated by academic staff (see assessment criteria on the following pages). Attendance at all of the presentations is mandatory. Students will lose 1 mark for each day they do not attend and will lose an additional 2 marks if they do not attend their own group presentation.

The timetable for the Evidence Based Symposium will be posted on Moodle at https://moodle.telt.unsw.edu.au/

Format for Evidence Based Symposium Written Abstract
Evidence Based Symposium assessment forms

Marking scheme for team member assessment

Student Name: ..

Group number: ...

Assessors names: ...

<table>
<thead>
<tr>
<th>Score</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>Participation in the planning of the presentation</td>
</tr>
<tr>
<td>0.5</td>
<td>Execution of allocated tasks effectively and on time</td>
</tr>
<tr>
<td></td>
<td>Attendance to meetings called on by group members</td>
</tr>
<tr>
<td></td>
<td>Contribution to group discussion</td>
</tr>
<tr>
<td></td>
<td>Scientific quality of contribution</td>
</tr>
<tr>
<td></td>
<td>Total</td>
</tr>
</tbody>
</table>

Justification: ..

...
...
...
...
...
...
...
...
...
...

Signature: ... Date: ...
Marking scheme for peer assessment

Presenting group: ………………….

Topic: ………………………………

Student Assessor: Name………………………………………………… Group No.

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>0.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Originality of presentation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clear explanation of the most important aspects of topic</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evidence of inclusion of recent medical literature</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evidence of critical evaluation of the literature</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Answering relevant questions</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Comments:

Signature: ……………………… Date: ………………………
Marking scheme for assessment by academic staff

Group number: ……………………………………………………………………………………………

Assessor’s name: ……………………………………………………………………………………………

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>0.5</th>
<th>1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demonstrate an understanding of the topic and how it fits into the point of discussion</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Demonstrate effective communication of the most important aspect of the topic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ability to effectively discuss questions on the topic</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Demonstrate an ability to utilise the current medical literature to support argument</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clear and justified conclusions</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Comments: ……
………
………
………
………
………
………
………

Signature: …………………… Date: ……………………
Revision Quiz On-line

This quiz consists of 20 questions focusing on learning outcomes 1, 2, 3 and 4 described in the Course Outline. These online questions encourage independent and reflective learning. This occurs in a non-threatening environment, without fear of embarrassment for making errors. The aim of this assessment is to provide students with prompt feedback on their progress that would allow them to self-adapt their preparation for the exams rather than to rank students. The online quiz is aligned to the end of the course and will be available from the 13th to 29th of October 2014.
Assessments

Students will undertake multiple forms of assessment during the session

1) **Evidence based symposium** is a group presentation that comprises 15% of the final mark. Of the 15% total mark, 2.5% will be determined by members of the group, 2.5% by peer assessment and 10% will be allocated by academic staff on the basis of content, presentation, use of relevant literature and ability to answer questions on the topic.

2) **Tutorial quizzes** are weekly individual and group assessments in a form of multiple choice questions and will comprise 10% of the final mark (1% for each 5 individual quizzes and 1% for each 5 group quizzes). Each tutorial will commence with a quiz which will first be attempted individually and the answers submitted to your tutor. The same quiz questions will then be attempted in teams, with each team submitting their consensus answers. The tutor will guide you through the answers, encourage discussion and provide clarifications regarding of the challenging questions and concepts. Some of the tutorials will have additional tasks to be completed on a worksheet in your course manual. Please bring your course manual to all the tutorials and practical classes. Each quiz is primarily based on the two lectures given during same week and a pre-reading that will be allocated prior to each tutorial. You are therefore strongly advised to attend and review the lectures and perform the allocated pre-reading before you come to the tutorial. The recommended pre-readings are only a guide, additional reading on the subject from the prescribed textbooks is highly recommended.

3) **Mid-session written exam.** Students will complete a 45 minute written mid-session exam on week 6, **Friday the 5th of September 2014 at 9:00am**. The exam will contain 5 multiple choice questions and 3 short answer questions that may include interpretation of diagnostic image(s), describing pathophysiological processes, describing and diagnosis of macroscopic specimen and/or writing histopathological reports. This will constitute 10% of the final mark of the course. A general feedback to each tutorial group will be provided on week 7, **Friday the 12th of September 2014, 9-10**. Students who performed poorly in this exam may receive individual feedback either face-to-face or electronically. The aim of this assessment is to provide timely feedback on your progress and provide you with remedial assistance if needed.

4) **A practical examination in week 13.** Students will complete a practical exam on **Friday the 31st of October 2014, 9-11am at room G6/G7**. This will constitute to 20% of the final mark for the course. This will consist of a series of 10 stations, each with questions based on material presented during term focused on learning outcomes 2, 3, 4 and 5 described in the Course Outline. Students will rotate around the stations, spending 3 minutes per station.

5) **End of course written examination.** At the end of the session there will be written exam that accounts for 45% of the final mark. The questions assess all the learning outcomes and encourage an in-depth understanding of the pathology of musculoskeletal diseases in a clinical and research context. Marks will be weighted as follows: Short answer questions 25% and Objective items 20%. The short answer questions vary in style, but are intended to provide you with the opportunity to demonstrate your understanding of the topic and your ability to integrate ideas rather than simple “regurgitation of facts”. The objective items consist of 20 multiple choice questions where the best or most appropriate answer is chosen from among alternatives.
Sample Examination Paper

SAMPLE END OF COURSE EXAMINATION FORMAT FOR 2014

(1) TIME ALLOWED: 1.5 HOURS.

(2) ANSWER ALL QUESTIONS.

(3) ANSWER PART A QUESTIONS 1 AND 2 IN SEPARATE BOOKS. WRITE LEGIBLY IN INK.

(5) ANSWER PART B USING THE GENERALISED ANSWER SHEET PROVIDED.

(6) THIS PAPER MAY NOT BE RETAINED BY THE CANDIDATE.

PART A (25 Marks)

1. Explain to a healthy 20-year-old female how she might be able to prevent herself from developing osteoporosis later in life.
 (10 marks)

2. A 22-year-old man was brought by ambulance to the Emergency Department. One hour previously, he had been driving a car and was involved in a high-speed head-on collision. He had not been wearing a seat belt. Immediately after the accident, he briefly lost consciousness and recovered soon after. On arrival to the hospital he was disorientated and was gradually losing consciousness. Initial examination revealed multiple abrasions to the head, fracture on the left side of the skull and some bleeding from the left ear. What injuries might this patient have sustained? Explain how these might have developed.
 (10 marks)

PART B (20 marks)

This part of the examination consists of 20 questions, each containing 5 statements. For each question, select the BEST or MOST APPROPRIATE answer (i.e that which is most relevant for the disease and/or its consequences) from among the alternatives, several or all of which may be true. On the supplied generalised answer sheet, FILL IN the corresponding circle. USE PENCIL.

1. Antibody tests are useful in the diagnosis of:
 (A) Parkinson disease
 (B) Multiple sclerosis
 (C) Segmental demyelination
 (D) Myasthenia gravis
 (E) Motor neuron disease

2. Osteosarcomas:
 (A) May arise in bones affected by Paget’s disease
 (B) Usually metastasise to local lymph nodes
 (C) May show areas of cartilage formation
 (D) Commonly arise in the metaphyses of long bones
 (E) Are associated with exposure to ionising radiation

3. Intervertebral disc herniation:
 (A) Characteristically occurs at L3/L4
(B) Is commonly associated with facet joint degeneration
(C) Typically leads to spondylolisthesis
(D) Usually results in anterior protrusion of the nucleus pulposus
(E) Affects athletes more frequently than the elderly

4. Duchene muscular dystrophy:
 (A) Dystrophin is present in large quantities
 (B) Clinical expression occurs in adolescence and progression inevitable
 (C) It is the most common of the X-linked muscular dystrophies
 (D) Is commonly associated abnormal muscle and nerve fibres
 (E) Pulmonary infection is a rare complication

5. Rheumatoid Arthritis:
 (A) Is associated with periarticular osteoporosis and juxta-articular erosions
 (B) Is characterised by a florid polymorphonuclear cell infiltrate within hyperplastic vascular synovia
 (C) Yields chronic inflammatory cells on aspiration of synovial fluid
 (D) Is associated with elevated serum rheumatoid factor in approximately 95% of cases
 (E) Typically presents as a chronic, asymmetrical, joint arthropathy

Answers: 1D, 2D, 3E, 4B, 5A
Resources for Students

You are expected to use the following text available online via the UNSW library Sirius website at http://sirius.library.unsw.edu.au (zID and zPass required). Search for the database MD Consult, then search for Robbins Basic Pathology. Robbins Basic Pathology. 9th edition. V. Kumar, A.K. Abbas, & J.C. Aster (2012). Saunders & Co. Philadelphia PA; Elsevier Saunders.

Students wishing to study the molecular biology, clinical features of diseases and diagnosis in greater depth might consider the purchase of the following texts:

Additional Learning Resources

In addition, there are many resources available on the web, which vary from simple patient information brochures to on-line pathology courses to information on the latest research. Some general sites you may find useful are:

- University of Iowa (on-line histological slides on many of the topics covered) http://www.medicine.uiowa.edu/pathology/nlm_histology/or http://www.medicine.uiowa.edu/pathology/uarep_histopathology/
- American Arthritis Foundation (Patient information and latest research on arthritis) http://www.arthritis.org
- National Institute of Arthritis and Musculoskeletal and Skin Diseases http://www.niams.nih.gov/
- Neuromuscular Disease Centre, Washington University, St Louis, MO USA http://www.neuro.wustl.edu/neuromuscular/
- Muscle Physiology, University of California, San Diego http://muscle.ucsd.edu

PATH 3207 Moodle course

The online module for the Musculoskeletal Disease course can be found by logging in to Moodle at https://moodle.telt.unsw.edu.au/, using your student number as the user name (e.g. z1234567) and your zPass as the password. The PATH3207 Moodle module will contain information directly related to the course such as tutorial lists, revisions to the lecture timetable, examination timetables, links to lecture slides and iLecture recordings etc. **You are expected to visit this site regularly during your course.**

On-line lectures

PDF of most lectures will be up-loaded to Moodle together with corresponding recorded lectures (iLectures). However, large numbers of lecture slides in this course are images that are not annotated but explained/discussed in during the lecture. Therefore, you are **strongly advised to attend lectures in person**. Note that no online recording will be available for lectures that are of sensitive nature and those that are intellectually protected.

PATH3207 Virtual slide box and images

Students will be able to access microscopic slides to all practical classes at: http://vslides.unsw.edu.au/
Images of Disease (IOD) database

This database is a collection of images used for teaching within the Department. The latest version is available online, optimised for smart phones and tablet computers as well as Firefox 4+, Chrome 13+ and Safari browsers on laptop and desktop computers at http://iod.med.unsw.edu.au/. The IOD database contains over 3000 images relevant to your study as an undergraduate. Many of these images represent specimens from the Museum of Human Disease, histopathological images from the student histopathological slide set as well as some diagnostic images such as X-rays.

Many images used in this program are of a sensitive nature, and are intended for the purpose of private study by pathology students and graduates. You should exercise appropriate standard of professional ethics when using them.

Interactive images of disease

This is a collection of “hotted” images from the Department of Pathology’s database on the Museum of Human Disease web page. Images contain clickable “hotspots” allow identification of the normal features and pathological changes within each specimen. At present this is limited selection, intended for the education of senior high school students and interested members of the public. However, these might be useful tools for you to practice your skills in interpreting macroscopic specimens.

The Museum of Human Disease

The Donald Wilhelm Museum of Human Disease is located on the ground floor of the Samuels Building (Building F25). Originally located on the 5th floor of the Wallace Wurth Building, it was established by Professor Donald Wilhelm, the Foundation Professor of Pathology at this university. Thanks to his foresight, and to the tireless efforts of Dr G. Higgins (the Museum Curator until 2004), the Museum has been meticulously maintained and updated over the years to reflect the changing patterns of disease in our society. The Museum contains over 2,700 specimens (or “pots”), which display diseased human tissue at the macroscopic level, usually preserved in formalin. Specimens are obtained both from organs removed surgically and from tissue obtained at autopsy, where the natural history of disease is in full view. Please take note that some specimens of diseases which have become rare, e.g. diphtheria, are over 60 years old, and are irreplaceable. Each specimen is numbered and is accompanied by a clinical history (when known), a macroscopic description of the abnormalities displayed, and a histopathological description of changes at the microscopic level (where relevant). That information, specific to each of thirty areas (or “bays”), can be found in the Museum catalogues located in a bracket within each bay.

All the specimens in the museum are arranged in one or other of two major groups. One group comprises collections of specimens according to pathological processes such as congenital, inflammation and healing, vascular, neoplasia etc. The second group comprises collections of specimens under organ systems, such as cardiovascular, central nervous, renal etc. As responsible adults, we expect you to maintain decorum in the museum behave with care and respect for the integrity of the specimens, and help to keep the Museum tidy at all times. This means no eating or drinking in the Museum, and always returning specimens and catalogues to their allocated places. Do not shake the pots! This activity conveys no useful information, but often damages the specimens. If you discover that a specimen is leaking or broken, follow the instructions listed in the safety notice below. Remember that the Museum is a precious learning resource, of which you are encouraged to make full use.

The Museum of Human Disease page contains links to some excellent undergraduate and postgraduate educational resources that might be useful for you. The address is http://web.med.unsw.edu.au/pathology/pathmus/

Security in the Museum

It is a crime under the Human Tissue Act to steal or mistreat material preserved in the Museum or practical class laboratories. Anyone who contravenes the Act will be prosecuted.

In order to protect the collection of specimens, access to the Museum is restricted for students during weekdays from 9 a.m. to 5 p.m. The Museum is security locked, and can only be entered by using your student card to enable the doors to be opened. Mr Derek Williamson, Ms Julia Kiss and Mr Cutting play a supervisory role during office hours.

The Museum and practical class laboratories are under constant electronic surveillance.
Safety in the Museum

- Always handle museum specimens with care and respect. All specimens consist of generously donated human tissue.
- The specimens are preserved in Perspex and contain a range of preserving chemicals that may be harmful. Chemicals used may include formalin, pyridine and sodium dithionate. A full list of chemicals and associated information is available at the Health and Safety (H&S) station in the Museum and on the SoMS website.

<table>
<thead>
<tr>
<th>Chemical</th>
<th>Max. Percentage Composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glycerol</td>
<td>17 (v/v)</td>
</tr>
<tr>
<td>Pyridine</td>
<td>0.8 (v/v)</td>
</tr>
<tr>
<td>Sodium Acetate</td>
<td>7 (w/v)</td>
</tr>
<tr>
<td>Formalin</td>
<td><2 (v/v)</td>
</tr>
<tr>
<td>Sodium Dithionate</td>
<td>0.4 (w/v)</td>
</tr>
</tbody>
</table>

- For reasons of hygiene, never take food or drink into the museum.
- Never leave a museum specimen on the floor, or in any precarious position.
- If a specimen is leaking, turn it upside down to prevent further leakage, then immediately inform Mr David Cutting or a member of academic staff.
- If a specimen is broken, do not attempt to wipe up the spillage. Use the kitty litter provided in the central cupboards to absorb the fumes, then clear the area and immediately inform Mr Vincent Strack Van Schijndel or a member of academic staff.
- Remember that the museum is here for your benefit - your cooperation in maintaining neatness and safety at all times is appreciated.
- For more information on matters related to occupational and health safety policies of the UNSW visit the following web site: http://www.ohs.unsw.edu.au/ohs_policies/
Administrative Matters

You may also meet the following members of the School support staff during the course of the year:

Ms Soo Han Chup
Position: Administrative Officer, Department of Pathology
Location: SOMS Administration, Wallace Wurth Level 2
Phone: 9385 2528
Ms Chup is responsible for the distribution of Pathology manuals to students, and will assist in arranging interviews with academic staff within the Department.

Ms Carmen Robinson and Mr Ryan Ling
Position: Student Advisors
Location: Room G27, Biosciences Building
Ms Robinson and Mr Ling are responsible for assistance with general enquiries, enrolment procedures and collection of assignments, special consideration and course timetable.
Phone: 9385 2464/9385 8301
E-mail: Carmen.Robinson@unsw.edu.au; ryan.ling@unsw.edu.au

Mike Williams
Position: Information Manager, SOMS
Location: SOMS Administration, Wallace Wurth Level 2
Please contact Mr Williams if you have any inquires related to PATH3207 materials up-loaded to this site including lectures, assignments, timetables and communications. Mr Williams also maintains materials up-loaded to Moodle.
Phone: 9385 8288
Fax: 9385 2866
E-mail: m.williams@unsw.edu.au

Mr Derek Williamson
Position: Museum Manager
Location: Room G04 Ground Floor Samuels Building, Building F25
Mr Williamson provides support for all undergraduate teaching programs. He plays a major role in broadening the use of the Museum of Human Disease by introducing an integrated learning program for senior high school students and community interest groups. Mr Williamson Co-ordinates a network of volunteers, who assist with the supervision of visitors from outside the University.
Phone: 9385 2190
E-mail: derek.williamson@unsw.edu.au

Mr David Cutting
Position: Museum Technical Officer/Laboratory Manager
Location: Room G06 Ground Floor Samuels Building, Building F25
Mr Cutting is responsible for the mounting and maintenance of Pathology Museum specimens, both on campus and in the associated teaching hospitals. Contact Mr Cutting immediately if there are any broken or leaking specimens in the Museum.
Phone: 9385 1722
E-mail: davecutting@unsw.edu.au

Ms Julia Kiss
Position: Museum Education Officer
Location: Room G06 Ground Floor Samuels Building, Building F25
Ms Julia Kiss assists Mr Williamson in delivering Museum learning programs and coordinating volunteers.
Phone: 9385 1522
Academic Honesty and Plagiarism

What is Plagiarism?

Plagiarism is the presentation of the thoughts or work of another as one’s own.* Examples include:

- direct duplication of the thoughts or work of another, including by copying material, ideas or concepts from a book, article, report or other written document (whether published or unpublished), composition, artwork, design, drawing, circuitry, computer program or software, web site, Internet, other electronic resource, or another person’s assignment without appropriate acknowledgement;
- paraphrasing another person’s work with very minor changes keeping the meaning, form and/or progression of ideas of the original;
- piecing together sections of the work of others into a new whole;
- presenting an assessment item as independent work when it has been produced in whole or part in collusion with other people, for example, another student or a tutor; and
- claiming credit for a proportion a work contributed to a group assessment item that is greater than that actually contributed.†

For the purposes of this policy, submitting an assessment item that has already been submitted for academic credit elsewhere may be considered plagiarism.

Knowingly permitting your work to be copied by another student may also be considered to be plagiarism. Note that an assessment item produced in oral, not written, form, or involving live presentation, may similarly contain plagiarised material.

The inclusion of the thoughts or work of another with attribution appropriate to the academic discipline does not amount to plagiarism.

The Learning Centre website is main repository for resources for staff and students on plagiarism and academic honesty. These resources can be located via: www.lc.unsw.edu.au/plagiarism

The Learning Centre also provides substantial educational written materials, workshops, and tutorials to aid students, for example, in:

- correct referencing practices;
- paraphrasing, summarising, essay writing, and time management;
- appropriate use of, and attribution for, a range of materials including text, images, formulae and concepts.

Individual assistance is available on request from The Learning Centre.

Students are also reminded that careful time management is an important part of study and one of the identified causes of plagiarism is poor time management. Students should allow sufficient time for research, drafting, and the proper referencing of sources in preparing all assessment items.

* Based on that proposed to the University of Newcastle by the St James Ethics Centre. Used with kind permission from the University of Newcastle.

† Adapted with kind permission from the University of Melbourne.

The School of Medical Sciences will not tolerate plagiarism in submitted written work. The University regards this as academic misconduct https://my.unsw.edu.au/student/academiclife/assessment/AcademicMisconduct.html and imposes severe penalties. Evidence of plagiarism in submitted assignments, etc. will be thoroughly investigated and may be penalised by the award of a score of zero for the assessable work. Flagrant plagiarism will be directly referred to the Division of the Registrar for disciplinary action under UNSW rules.

*The attention of students is drawn to the following extract from the above website:

"The basic principles are that you should not attempt to pass off the work of another person as your own, and it should be possible for a reader to check the information and ideas that you have used by going to the original source material. Acknowledgment should be sufficiently accurate to enable the source to be located speedily."

"The following are some examples of breaches of these principles:

a) Quotation without the use of quotation marks. It is a serious breach of these rules to quote another's work without using quotation marks, even if one then refers to the quoted source. The fact that it is quoted must be acknowledged in your work."
b) Significant paraphrasing, e.g., several sentences, or one very important sentence, which in wording are very similar to the source. This applies even if the source is mentioned, unless there is also due acknowledgment of the fact that the source has been paraphrased.

c) Unacknowledged use of information or ideas, unless such information or ideas are commonplace.

d) Citing sources (e.g., texts) which you have not read, without acknowledging the 'secondary' source from which knowledge of them has been obtained."

Appropriate citation of sources therefore includes surrounding any directly quoted text with quotation marks, with block indentation for larger segments of directly-quoted text. The preferred format for citation of references is an author-date format with an alphabetically arranged bibliography at the end of the assignment. Note that merely citing textbooks or website URLs is unlikely to yield a bibliography of satisfactory standard. **The internet should be avoided as a primary source of information.** Inclusion of appropriate journal articles, both primary research publications and reviews, is usually expected.
Teaching Laboratories Risk Assessments

<table>
<thead>
<tr>
<th>Hazards</th>
<th>Risks</th>
<th>Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ergonomics</td>
<td>Musculoskeletal pain</td>
<td>Correct workstation set-up.</td>
</tr>
<tr>
<td>Electrical</td>
<td>Electrical shock/fire</td>
<td>Check electrical equipment in good condition before use.</td>
</tr>
<tr>
<td>Handling pots</td>
<td>Chemical spillage</td>
<td>All portable electrical equipment tested and tagged.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Instructions on correct manual handling of pots</td>
</tr>
</tbody>
</table>

Workstation set-up

![Diagram of workstation set-up]

Personal Protective Equipment

All pots contain real human tissue that has been generously donated to medical science and must be treated with appropriate respect and dignity.

Specimens are preserved in Perspex and contain a range of preserving chemicals that may be harmful. Chemicals used include formalin, pyridine, sodium dithionate. A full list of chemicals and associated MSDS information is available in the H&S Station and on the SoMS website.

MANUAL HANDLING OF POTS

It is recommended that all students wash their hands thoroughly as they leave practical class Chemical residues may be present on pots.

Carry one pot at a time. Use two hands at ALL TIMES and support the base of pot.

Avoid rough handling and/or tilting of pots. This can cause leaking joints or tear tissue in specimen.

Limit the number of pots on a table at any one time.
SPILLS AND LEAKAGES
If a specimen is leaking or broken, do not attempt to wipe up the spillage. Clear the area and immediately inform the Museum Manager or a member of academic staff. A spill kit will then be used to absorb the fumes.

Emergency Procedures
In the event of an alarm, follow the instructions of the demonstrator. The initial sound is advising you to prepare for evacuation and during this time start packing up your things. The second sound gives instruction to leave. The Wallace Wurth assembly point is in the lawn in front of the Chancellery. In the event of an injury inform the demonstrator. First aiders and contact details are on display by the lifts. There is a first aid kit in the laboratory and the Wallace Wurth security office.

Clean up and waste disposal
Not necessary in these practicals.
No open-toe shoes allowed

Declaration
I have read and understand the safety requirements for this practical class and I will observe these requirements.

Signature:……………………………………………………………Date:……………………………
Student Number:…………………………..

Reviewed on 04/07/2014
<table>
<thead>
<tr>
<th>Physical</th>
<th>‘Stabbing’ wound of hand</th>
<th>• Use disposable gloves</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biological</td>
<td>Inoculation/Irritant</td>
<td>• Do not eat, drink or smoke in the teaching laboratory</td>
</tr>
<tr>
<td></td>
<td>Corrosive/Flammable</td>
<td>• Use disposable gloves</td>
</tr>
<tr>
<td>Chemical</td>
<td>Irritant/neurotoxic</td>
<td>• Low concentrations of chemicals used</td>
</tr>
<tr>
<td>Acrylamide</td>
<td>Irritant</td>
<td>• Use disposable gloves</td>
</tr>
<tr>
<td>Azide</td>
<td>Mild Irritant</td>
<td></td>
</tr>
<tr>
<td>...PBS</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Pipetting ergonomics: to avoid aches and pain due to repetitive pipetting follow the following guides

- Adjust your chair or stool so that your elbow is at a 90° angle while pipetting.
- Adjust the height and position of sample holders, solution container, and waste receptacle so that they are all approximately the same.
- Try to work with your hands below shoulder height.
- Let go of the pipette from time to time and give the fingers/hand a break.
- Do not twist or rotate your wrist while pipetting; Use minimal pressure while pipetting.
- Try to switch periodically between different types of work.

For more information on preventing repetitive strain while pipetting click on http://www.anachem.co.uk/rsi

Personal Protective Equipment required

<table>
<thead>
<tr>
<th>Equipment</th>
<th>Required/Optional</th>
</tr>
</thead>
<tbody>
<tr>
<td>Closed in Footwear</td>
<td>optional</td>
</tr>
<tr>
<td>Lab. Coat</td>
<td>optional</td>
</tr>
<tr>
<td>Gloves</td>
<td>optional</td>
</tr>
<tr>
<td>Safety Goggles</td>
<td>optional</td>
</tr>
</tbody>
</table>

Emergency Procedures

In the event of an alarm sounding, stop the practical class and wait for confirmation to evacuate from demonstrators. Then wash your hands and pack up your bags.

Follow the instructions of the demonstrators regarding exits and assembly points.

Clean up and waste disposal

- Remove your gloves and dispose in the biowaste bins provided.
- Dispose of all pipette tips in the bin provided.

Ethics Approval

This type of practical does not require ethics approval.

Declaration

I have read and understand the safety requirements for this practical class and I will observe these requirements.

Signature:……………………………………………………………Date:……………………………

Reviewed on 04/07/2014