ANAT2451
FUNCTIONAL ANATOMY FOR EXERCISE PHYSIOLOGY
SESSION 1: 2013
Course Convenor/Course Authority: ... 3
Units of Credit .. 4
Hours per week ... 4
What is Anatomy? .. 4
Course Aims .. 5
Student learning outcomes ... 5
How the course relates to the Exercise Physiology profession 6
How the course relates to the Exercise Physiology program 6
Teaching rationale and strategies .. 7
Attendance ... 8
Ethical behaviour and human remains ... 8
Book list .. 9
Assessment .. 9
Feedback .. 10
Plagiarism ... 10
Problems with the course ... 11
Student equity and diversity issues ... 11
Applications for Special Consideration ... 12
Supplementary Examinations ... 12
Official communication by email ... 12
Resources for students ... 13
Revision Facilities .. 13
Course evaluation and development ... 14
A note of the preparation of anatomical material 15
Health and Safety Rules for Students in the Dissecting Room 16
Student Risk Assessment ... 18

CLASS SCHEDULE .. 22
Course Convenor/Course Authority:
Dr Nalini Pather
Office: Room 111, Level 1, 30 Botany Street, Randwick
Telephone: 02 9385 8025
Email: N.Pather@unsw.edu.au

Co-convenor:
Dr Irina Dedova
Office: Room 111, Level 1, 30 Botany Street, Randwick
Telephone: 02 9385 8869
Email: I.Dedova@unsw.edu.au

Units of Credit
This course is worth six units of credit (6 UOC).

Hours per week
This course entails 6 hours per week comprising two hours of lectures, two hours of laboratory practical, one hour tutorial/lecture, and one hour online tutorial

What is Anatomy?
Anatomy is derived from the Greek words ‘ana’ (meaning to separate, apart from), and ‘temnein’ (meaning to cut up, cut open). Anatomy, therefore, is the study of body structure or morphology. Anatomy is one of the earliest of the medical sciences and has a colourful and prestigious recorded history that spans some 4000 years, with the earliest documents found in Egypt (the Edwin Smith Papyrus, dated 1600BC). Many of the earliest known medical scientists and physicians were devoted to understanding anatomy including the Greek physician Hippocrates (460-377BC) who first discovered the tricuspid valve of the heart. This was around the same time that cadavers were first used in anatomical research by Herophilus and Erasistratus in Alexandria, Egypt (4BC) and when the Sushruta Samhita, an Ayurvedic medical text including detailed anatomy descriptions was compiled in India. But by far the most notable of the early anatomists is Galen (2AD) who also compiled much of the anatomical knowledge known to date into what is probably the first anatomy textbook that reigned unchallenged for almost 1500 years - most of this text was destroyed during the Dark Ages. Anatomy really flourished around the 17th and 18th centuries largely due to the invention of the printing press that facilitated the exchange of ideas. Because anatomy was based on observations and drawings, the best anatomists where usually excellent artists (au fait with Latin) who attended dissections and published their drawings for money – these included, Michaelangelo, Rembrandt and Da Vinci.

Today, anatomy is the bedrock of medicine and of an array of allied health disciplines. Anatomical research today is diverse and focuses on understanding anatomical function from that of a single cell to through to the inter-relation of systems and function, biomechanics and
movement, and embryology and development. This is done via techniques in cell and molecular biology, dissection as well as the use of clinical and radiological techniques.

Exposure to cadaveric specimens is the cornerstone of this course and will provide you with an opportunity to examine musculoskeletal anatomy and appreciate its adaptation to function.

Course Aims
This course covers the musculoskeletal anatomy of the upper and lower limbs and the back focusing on its function in movement. The course includes a study of the functional aspects of muscles and joints, and consideration of the mechanical properties of tissues. Laboratory classes involve study of prosected specimens, radiography images and surface anatomy.

The course aims to:
- provide students with a knowledge of the musculoskeletal anatomy of the upper limb and lower limb, and the back.
- develop students' understanding of the functional principles underlying joint movements and muscle actions of the upper limb and lower limb, and the back.
- develop students' understanding of the ways in which the structure and function of muscle and joints relates to human movement and biomechanics.

Student learning outcomes
The course focuses on the organisation and structure of the musculoskeletal system that underpins function especially in movement. Student engagement particularly through the gross anatomy practicals will equip them to be able to identify the anatomical features of each of joints studied on dissected human specimens, bones and models, as well as apply these to discussions of functional and applied aspects of the musculoskeletal system.

At the end of the course, the student should:
- better understand the functional anatomy of the limbs and the back
- know the anatomical features the skeletal elements of the limbs and the back
- know the structural features of each of the joints of the limbs and the back
- know the factors that contribute to stability and/or dislocations, and limit movement of each of the joints of the limbs and the back
- know the anatomical features and actions of the muscles that function to move the limbs and back.
- know the organization of the major limb nerve plexuses
- know the peripheral nerves that innervate the muscles of the limbs and back
- know the major vessels (arteries, veins and lymphatic) that supply/drain the limbs and back
- apply anatomical knowledge in evaluating movement of the limbs and back, and in understanding the effect of peripheral nerve lesions
- apply anatomical knowledge to the understanding of muscle testing
- appreciate the link between functional anatomy and biomechanics
know the surface anatomy related to the structures of the limbs and back

demonstrate practical laboratory skills in anatomy and an understanding of the ethics of working with human remains

In addition to these, the University of New South Wales (UNSW) has developed a list of attributes that its graduates should possess upon graduation – these are referred to as the ‘Graduate Attributes’. ‘Graduate attributes are the qualities, skills and understandings a university community agrees its students should develop during their time with the institution. These attributes include, but go beyond, the disciplinary expertise or technical knowledge that has traditionally formed the core of most university courses. They are qualities that also prepare graduates as agents for social good in an unknown future’ (Bowden et al., 2000). These generic graduate attributes for UNSW can be found at: https://my.unsw.edu.au/student/atoz/GraduateAttributes.html

In addition to these, the Department of Exercise Physiology has identified the following graduate attributes for Health and Exercise Science students:

• develop a thorough understanding of the relationship between physical activity and health
• develop a broad range of communication skills and an ability to work as a member and a leader of a team
• develop advanced problem solving skills and a capacity for critical thinking
• attain competencies in conducting a broad range of exercise-based clinical tests
• attain skills and detailed clinical knowledge relevant to cardiac, musculoskeletal, or neuromuscular rehabilitation

How the course relates to the Exercise Physiology profession
This course provides students with an understanding of the application of functional anatomy and biomechanics to human movement. In their careers as exercise physiologists, graduating students will require a detailed knowledge of the joint movements and muscle actions involved in exercise activities, activities of daily living and workplace tasks. This course delivers the necessary theoretical background in functional anatomy, highlighting its close link with biomechanics, thus enhancing understanding of movement processes and injury risk.

How the course relates to the Exercise Physiology program
ANAT2451 Functional Anatomy for Health and Exercise Science is a course offered to those students enrolled in the Exercise Physiology Program. It is undertaken in Semester 1 of Stage 2. The course builds on the Stage 1 course Introductory Exercise Science (HESC1501) and Introductory Anatomy (ANAT1551), and complements the Stage 2 course in biomechanics (BIOM2451). Your knowledge in functional anatomy will be directly applied in subsequent courses in the program; specifically movement assessment and instruction (HESC2452) and the Stage 3 courses course of muscle and motor control (HESC3101), movement rehabilitation (HESC3532) and neuromuscular rehabilitation (HESC3592).
Teaching rationale and strategies
Student interaction and engagement with the content of the course underpins all learning activities. Students are initially introduced to anatomical regions in the form of lectures incorporating multimedia-learning tools. With this knowledge in hand, students engage in learning activities during the laboratory sessions where the teacher/tutor guides the student and encourages each student to actively participate in their learning. Students are always encouraged to question, observe and share knowledge and experiences that help their learning and that of their peers. The anatomy laboratory is a wonderful and fascinating environment for discovery and students are given every opportunity to explore cadaveric specimens, participate in active discussions and find answers for themselves.

The teaching sessions are in the table below:

<table>
<thead>
<tr>
<th>Laboratory</th>
<th>Lectures</th>
<th>Tutorials</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuesday</td>
<td>Wednesday</td>
<td>Thursday</td>
</tr>
<tr>
<td>11am-1pm or 2-4pm</td>
<td>3-5pm</td>
<td>1-2pm</td>
</tr>
</tbody>
</table>

Lectures – This approach is used to present relatively large amounts of information within a given time on specific topics throughout the course. Lecture notes will be available online (see below in COURSE RESOURCES section) prior to or after each lecture, so you should be able to think about and develop an understanding of the lecture concepts as they are presented, rather than writing voluminous notes. However, there will be information and explanations presented in lectures in addition to those covered in the notes that you should take down if they help you to understand the material. The lecturer will also try to allow some time for interaction and activities in each lecture to provide you with an opportunity to clarify or reinforce the ideas that have been presented. You should take these opportunities to think about the information that has been presented and ask questions to enhance your understanding.

Laboratory practicals – The purpose of the practical sessions is to give students first hand experience of the content covered. The anatomy laboratory is the best resource to learning anatomy and is a wonderful place of privilege, discovery and discussion. The laboratory sessions are small group sessions that allow students to explore prospected specimens of the musculoskeletal system. Although, the tutor is present to guide you through the activities in these sessions, these sessions are meant to be lead by students working in groups of 3-4.

Tutorials – These sessions are designed for you to apply the concepts that you have learnt in the course. In these sessions, you will work in small groups of about 5 students each. You will be presented with discussion questions based on case studies or movement analysis images, and you will work in these groups to find solutions to these. Alternatively, you maybe required to complete activities using the Virtual Anatomy Adaptive Tutorial.

Virtual Anatomy Adaptive Tutorials (VAnAT) – The VAnAT will be made available to students periodically via a link in BlackBoard during this course. These are virtual tutorials based on high quality images of prospected specimens. The tutorials are a series of interactive questions based on applying the content covered in lectures and laboratory sessions, and are a useful resource in consolidating and revised course content. Sessions are structured to encourage student participation in these activities and to enhance your learning. You will benefit most if
you do these tutorials consistently. Some of these tutorials will also be done during allocated
time within the course timetable. The focus of these tutorials will be to apply the principles of
functional anatomy of the limbs and back.

Independent study – There is insufficient time in the lectures, tutorials and practicals for you
to develop a deep understanding of the concepts covered in this course. In order for you to
achieve the learning outcomes that will be assessed, you will need to revise the material
presented in the course regularly. You will probably also need to do additional reading beyond
the lecture materials in order to learn effectively. Relevant additional resources, including
textbook chapters, will be cited in lecture and practical sessions.

Assessments – These tasks have been chosen as tools to enhance and guide your learning as
well as a way of measuring performance, and are therefore a central teaching strategy in this
course.

Attendance
It is strongly recommended that students attend all lectures as they provide the basis for the
laboratory classes. Attendance at practical classes is compulsory for completion of this course.
The University’s 80% attendance rule will be applied for this course. Please read these rules for
attendance at the following URL: https://my.unsw.edu.au/student/atoz/AttendanceAbscence

Students should consult the following document for guidelines regarding extra-curricular
activities:

Ethical behaviour and human remains
A central form of learning in this course is to study prosected (i.e. professionally dissected)
human anatomical specimens. These are prepared from the remains of people who have
donated their bodies to UNSW so that you and your peers can study the human body. This is
an extraordinary generous act of these donors and their families, and is a special and
wonderful privilege. Treating these remains with the utmost care and great respect is
mandatory and is our responsibility to these donors and their families – it is also a good
ethical practice and is mandated by law.
Book list

It is recommended that you have access to a text as well as an atlas of anatomy

Recommended text

OR

(Available online through the library or via the course Blackboard site http://er.library.unsw.edu.au/er/cgi-bin/eraccess.cgi?url=http://www.mdconsult.com/books/about.do?about=true&eid=4-u1.0-8978-0-443-06952-9..X0001-X--TOP&isbn=978-0-443-06952-9&uniqId=343683729-2)

Recommended Atlas

(note: This comes as a bundle with Clinically Oriented Anatomy from the UNSW bookshop)

Other useful textbooks are:

Assessment

Continuous assessment 20%
Mid-term Practical test 20%
Final Practical test 20%
Final Theory exam 40%

Continuous assessment

In these assessments, you will need to:

- demonstrate a thorough knowledge of the functional anatomy of the limbs and back
- analyse and evaluate the involvement of muscles in movement.
- demonstrate and understanding of the link between functional anatomy and biomechanics
- demonstrate practical laboratory skills in anatomy and an understanding of the ethics of working with human remains questions.

Continuous assessments are usually in the form of short tests consisting of multiple choice question (MCQ) randomly given at the beginning of practical sessions, and in the form of Virtual Adaptive Anatomy Tutorials (VAnATs) that are completed online.

Spot test

In addition to the above, spot tests assess your ability to identify and correctly name significant structures in prosected human specimens, models and radiographs. In addition it
also examines the ability to answer relevant short theory questions.

In a spot test, students will usually have 3 minutes at each of 10 stations (rest spots maybe included, if necessary) to identify 4-5 labelled structures on the specimen and answer questions related to these structures (each station is worth 10 marks). Theory questions may be included at some stations as well.

Spot test 1 will cover lectures and practical sessions up to and including week 6. Spot test 2 will cover lectures and practical sessions from week 7-13, inclusive.

Theory examination
The purpose of this exam is to test your understanding of the concepts covered in the ENTIRE COURSE and to assess deeper learning (i.e. the ability to inter-relate information and concepts) and critical thinking. This is one 2-hour paper written during the formal Semester 1 examination period. The final examination will consist of multiple choice questions and short answer questions. The exam will be held during the end-of-session exam period. The outcomes for this assessment are as for those above.

Submission of assessment tasks
Assignments are to be submitted online – full instructions will be given to you via Blackboard. In cases where an extension has NOT been granted, the following penalties will apply: For submissions after 9:00am on the due date, a penalty of 50% of the maximum marks available for that assignment will be incurred. A further 25% of the maximum possible allocated marks (i.e., a total of 75%) will be deducted from submissions that are two (2) days late. Submissions received more than two (2) days after the due date will not be allocated a mark, however, these assignments must still be submitted to pass the unit.

Note: final marks can be accessed at:

https://my.unsw.edu.au/student/academiclife/assessment/Results.html

Feedback
This is a challenging course. The course conveners will endeavour to make this course interesting, relevant and a rewarding learning experience for you. Problem based questions have been included at the end of each practical in your course manuals – you are encouraged to work through these to provide yourself with feedback on your progress through the course. During the practical sessions, you will also have an opportunity to try some practice spot-test-style questions. Answers for these will be provided as feedback to you on your progress. The continuous assessment MCQ is designed to give you continuous feedback on your progress. Answers to these will also be discussed immediately following the assessment. In addition, the virtual adaptive anatomy tutorials will be made available via a link in Blackboard. These will provide you with immediate feedback and are to be used as a formative assessment tool.

Plagiarism
The School of Medical Sciences will not tolerate plagiarism in submitted written work. Students should be aware of UNSW’s policy on academic and student misconduct:
Evidence of plagiarism in submitted assignments, etc. will be thoroughly investigated and may be penalised by the award of a score of zero for the assessable work. Flagrant plagiarism will be directly referred to the Division of the Registrar for disciplinary action under UNSW rules.

The attention of students is drawn to the following extract from the above website:
“The basic principles are that you should not attempt to pass off the work of another person as your own, and it should be possible for a reader to check the information and ideas that you have used by going to the original source material. Acknowledgment should be sufficiently accurate to enable the source to be located speedily.”

The following are some examples of breaches of these principles:

a) Quotation without the use of quotation marks. It is a serious breach of these rules to quote another’s work without using quotation marks, even if one then refers to the quoted source. The fact that it is quoted must be acknowledged in your work.

b) Significant paraphrasing, e.g., several sentences, or one very important sentence, which in wording are very similar to the source. This applies even if the source is mentioned, unless there is also due acknowledgment of the fact that the source has been paraphrased.

c) Unacknowledged use of information or ideas, unless such information or ideas are commonplace.

d) Citing sources (e.g., texts) which you have not read, without acknowledging the ‘secondary’ source from which knowledge of them has been obtained.”

Appropriate citation of sources therefore includes surrounding any directly quoted text with quotation marks, with block indentation for larger segments of directly quoted text. The preferred format for citation of references is an author-date format with an alphabetically arranged bibliography at the end of the assignment. Note that merely citing textbooks or website URLs is unlikely to yield a bibliography of satisfactory standard. The Internet should be avoided as a primary source of information. Inclusion of appropriate journal articles, both primary research publications and reviews, is usually expected.

Problems with the course
If you have any problems with the course you should, in the first instance, consult the Course Authority. If you are unable to resolve the difficulty, you can consult the School’s nominated Grievance Resolution Officer (details may be obtained from the School Administrator, Ms Carmen Robinson, Room G27, Biosciences Building).

Student equity and diversity issues
Students requiring assistance are encouraged to discuss their needs with the Course Authority prior to, or at the commencement of the course, or with the Equity Officer (Disability) in the Equity and Diversity Unit (EADU) (9385 4734). Further information for students with disabilities is available at http://www.studentequity.unsw.edu.au/disabil.html

The course authority must be informed at the beginning of the course of any special consideration and circumstances esp. with regard to laboratory practical sessions and/or
Applications for Special Consideration
Students who miss an assessment due to illness or misadventure must submit an application for special consideration within 3 working days of the event to Student Central. Special considerations sought outside the 3 day time period WILL NOT be accepted except in TRULY exceptional circumstances.

Full details of application and the required documentation may be found at https://my.unsw.edu.au/student/atoz/SpecialConsideration.html

Note that normally, if you miss an exam (without medical reasons) you will be given an absent fail. If you arrive late for an exam no time will be granted. It is your responsibility to check timetables and ensure that you arrive on time.

Students who apply for consideration to Student Central must also notify the Course Authority immediately.

Applications for special consideration are accepted in the following circumstances only:
1. Where academic work has been hampered to a substantial degree by illness or other cause. Except in unusual circumstances a problem involving only three consecutive days or a total of five days within the teaching period of a semester is not considered sufficient grounds for an application.
2. The circumstances have to be unexpected and beyond your control. Students are expected to give priority to their University study commitments and any absence must clearly be for circumstances beyond your control. Work commitments are not normally considered a justification.
3. An absence from an examination must be supported by a medical certificate or other document which clearly indicates you were unable to be present. A student absent from an examination or who attends an examination and wants to request special consideration is normally required to provide a medical certificate dated the same day as the examination.
4. An application for Special Consideration must be provided within three working days of the assessment to which it refers. In exceptional circumstances an application may be accepted outside the three-day limit.

Please note: Students cannot claim consideration for conditions or circumstances that are the consequences of their actions or inactions.

Supplementary Examinations
- It is intended that supplementary exams for the School of Medical Sciences in Semester 1, 2013 will be held in the week commencing Monday 8th July, 2013. If you are eligible for these, you will be notified as soon as possible after final exam marks have been finalized. Please note, supplementary and deferred examinations may have a significant oral component.

Official communication by email
All students in this course are advised that email is the official means by which the School of Medical Sciences at UNSW will communicate with you. All email messages will be sent to your
official UNSW email address and, if you do not wish to use the University email system, you MUST arrange for your official mail to be forwarded to your chosen address. The University recommends that you check your email at least every other day. Facilities for checking email are available in the School of Medical Sciences and in the University Library.

Resources for students

Blackboard
Information about the course and a number of electronic study resources can be accessed via the UNSW Blackboard learning management system. You can access the system from myunsw. You can use Blackboard to download lecture notes, access your grades, find reference material in the course (such as this document), and communicate with the lecturer and your peers. Please see the course authority if you cannot access this course via Blackboard.

Lectopia
The Lectopia system (iLecture) provides digital audio recordings of lectures that can be accessed via streaming media over the web or as a podcast (if permitted by the lecturer). Lecture slides may be embedded in these presentations. http://telt.unsw.edu.au/lectopia/content/default.cfm?ss=1

We will endeavour to provide you with these however, please note this is not guaranteed as from time-to-time we expect (from past experience) that there will be some IT issues with these.

UNSW Library
The University Library provides a range of services to assist students in understanding how to identify what information is required for assignments and projects; how to find the right information to support academic activities; and how to use the right information most effectively. http://www.library.unsw.edu.au

The Primal Pictures Anatomy and the Acland’s Anatomy videos database provided by UNSW library is an excellent resource for anatomy.

Reserve (MyCourse)
Many items (books and journal articles) set as recommended reading for courses will be located in Reserve, which is on Level 2 of the Main Library. Some of the journal articles will be available in electronic format via Blackboard. To search for these items, go to the library website catalogue and search for the course code.

Other useful resources are:
A CD of anatomy images can be purchased from SOMS administration office in the Wallace Wurth building for $15. The CD contains images of some specimens and models used in the anatomy practicals.

Revision Facilities
1. Anatomy Museum – located on the 1st floor of the Wallace Wurth building. The museum contains a variety of bottled anatomical dissections. Please do not remove museum jars from
shelves. The museum also contains computers loaded with Anatomy software and Internet access. Access to the museum is by swipe card and is restricted to anatomy students only, between 8.30 a.m. and 5.30 p.m. Monday to Friday. NO photography is allowed in the Anatomy Museum.

2. Rooms 106 – 108 in the Wallace Wurth Building contain computers with a variety of anatomical software, and can be used to access the Virtual Adaptive Anatomy Tutorials (VAnATs). Access to this laboratory is by student swipe card only.

3. Laboratories (G2/G4) are generally open from about 8.30 a.m. to 5.30 p.m. Monday to Friday. Students may use them during these hours, provided the rooms are not required for other classes. Again these are accessible by swipe card only.

Course evaluation and development

ANAT2451 Functional Anatomy for Health and Exercise Science was offered for the first time in 2012 as part of the Bachelor of Exercise Physiology. This new course has been tailored to meet the needs of the exercise physiology students by placing greater emphasis on functional anatomy. From the experience of the course authority and students feedback last year, the following changes were made to this course:

1. The sequence of the lectures has been modified so that upper limb and lower limb is covered consecutively.
2. Virtual Adaptive Anatomy Tutorials (V-AnATs) will be incorporated formally into this course
3. The continuous assessment has been revised.

Student feedback is welcome and taken seriously. A Course and Teaching Evaluation and Improvement (CATEI) survey will be provided in the final weeks of the course to formally gather student feedback. The feedback received will be used to enhance all aspects of the course in its future delivery.

There will also be opportunities for a panel of representatives from ANAT2451 to meet with the course convenors at regular intervals during the course. This will provide you with an opportunity to discuss (via these reps) how the course is progressing and any issues that have arisen or difficulties in concepts etc. As CATEIs are usually at the end of the course, this student representative panel is an opportunity for issues to be addressed, corrected or amended while the course is still progressing so that it is rewarding and engaging to the current cohort of students.
A note of the preparation of anatomical material
In the gross anatomy practicals, you will have the privilege of working with dissected human specimens, as well as dried bones, models and radiological images. These dissections are obtained from cadavers, which have been generously bequeathed (donated) to the University, prior to death. As soon as possible after death, the body is brought to the University where it undergoes a process known as embalming, which involves flushing the blood out of the arterial system and then infusing it with a colourless preserving solution known as formalin. The specimens are then dissected to show specific anatomical features. Dissected specimens are stored in a preservative solution that does not contain formalin and when needed, is placed on tables for class use. In some cases, dissected specimens are impregnated with a curable polymer in a process known as plastination, which produces dry non-toxic specimens, which have the texture of firm plastic.
Health and Safety Rules for Students in the Dissecting Room

There are some rules that are enforced for the safety of the staff and students, while others are concerned with the need for care and respect of the prosection material.

General courtesy
- Students are required to attend each lecture and the assigned tutorial/laboratory class unless given special permission. Provision of an appropriate medical certificate to the course authority will be required for any Special Consideration.
- You may enter and view specimens in the Dissecting Room 101 only in the presence of your tutor and/or during your designated tutorial/laboratory class hours. You are not permitted to take visitors into the Dissection Room.

Health and Safety Rules
A detailed risk assessment for student activities in the Dissecting Room is located on the notice board at the front entrance (near 1st floor lifts).

When in the Dissecting Room, you are required to:
- always put on your laboratory coat when you enter the lab. If you have forgotten to bring your lab coat, purchase a disposable coat from the ground floor in Wallace Wurth building or the Union shops on campus. Lab coats must not be worn in the hall or anywhere outside the laboratories.
- wear covered shoes with enclosed heels, never thongs or sandals.
- wear latex or vinyl gloves when touching wet specimens (gloves are available from the Union Shop near CLB theatres).
- never eat or drink.
- never put anything in your mouth. For example, pens or pencils that you may have picked up from the table.
- avoid inhaling preservative solutions for prolonged periods. If you feel in need of fresh air, ask permission to leave the laboratory for a few minutes.
- report all accidents or incidents immediately to a staff member for assessment without exception. Injuries involving sharps or needle-stick will require a blood test as soon as possible.

At the end of your laboratory class:
- cover wet specimens with the towels provided. Make sure that towels do not hang over the edge of the table, because this allows fluid to drip onto the floor. Fluids on the floor are a major safety hazard and should be reported to staff immediately.
- replace stools under the tables in your cubicle.
- remove your gloves and dispose in the biowaste bins provided.
- wash your hands and instruments thoroughly with the soap provided and dry your hands with the paper towel.
- remove your laboratory coat when you leave the dissecting room.

Preservative solution
There are 3 main chemicals used as preservation fluids in the Dissecting Room:
- phenoxyethanol (2% in solution);
- methylated spirits (10%);
- formalin (5%)

The safety data sheets (SDSs) for these chemicals are located by the lab First Aid Kit and also on the notice board outside the lab. Women of reproductive years, and especially those who know they are pregnant, should note that all of these are suspected human reproductive and developmental toxins and therefore may pose a hazard to the unborn child. In addition, formalin is a formaldehyde solution.
is a human carcinogen. Avoid these chemicals coming into contact with your eyes and skin and they should not be ingested.

Most anatomy specimens are stored in 2% phenoxyethanol, which is classified as relatively non-toxic. You should always wear gloves when handling specimens and must avoid ingestion of this chemical and contact with your skin or eyes. Formaldehyde is reported to cause allergic skin and respiratory effects. The potential for adverse health effects, however, is markedly reduced at the concentrations used for embalming and storage of specimens in the Dissecting Room, i.e., the “formalin” solution is less than 5% of a 37% solution of formaldehyde. The specimens provided for classes are without any formalin and a combination of air extraction and conditioning continuously changes the air in the Dissecting Room.

First Aid
If assistance is needed during office hours you may approach Room 101 staff for First Aid. All incidents must be reported. The First Aid Kit is located on the left wall near the Dissecting Room entrance door. A second First Aid Kit is located in the east wing on the ledge opposite cubicle E4.

Emergency evacuation
In the case of a fire or other emergency the evacuation alarm will sound. When it sounds for the first time this indicates that everyone should get prepared in case it is necessary to evacuate. When it sounds for the second time, an announcement will be made over the speaker system - follow these instructions. Staff will be on hand to supervise any evacuation, and the emergency exit is at the south end of the lab. Do not use the lifts. The evacuation assembly area is the landscaped space immediately to the east of the Chancellery and adjacent to the Clancy Auditorium. Do not assemble anywhere else and do not leave this area until instructed.

Additional Safety Information
If additional safety information is required you can ask the course convenor or the Anatomy Dissection Laboratory Manager (Mr Vincent Strack). The latest safety information is always available from the SOMS HS Webpage.

Care and respect of prosected material
You are learning from human material prepared from people who have generously donated their bodies for the benefit of science. Skilled staff members have dissected the specimens to allow you, the student, to see anatomical structures in fine detail. Apart from caring for the specimens, it is important for all students learning Anatomy to have and show utmost respect for the specimens at all times, in the Dissecting Room, Room 101, and in the Anatomy Museum Room 105. Great care should always be exercised when handling specimens, in order to preserve their delicate structure.

Some specific points:

- **Always use only blunt forceps** to handle specimens and **probes** to point to structures, i.e. **never pull** at any parts of the specimen.
- It is **illegal** for any anatomical material to be removed from the premises of the Department of Anatomy for any purpose whatsoever (except of course, for the funeral). All anatomy specimens are micro-chipped for identification and record keeping.
- Photography and video recording are **not permitted** in the Dissecting Room 101, or the Anatomy Museum 105.
Student Risk Assessment

<table>
<thead>
<tr>
<th>Hazards</th>
<th>Risks</th>
<th>Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physical</td>
<td>Cold</td>
<td>• Wear laboratory coat over appropriate warm clothing</td>
</tr>
<tr>
<td>Cold temperature (16°C)</td>
<td>Penetrating wound of foot</td>
<td>• Wear enclosed shoes with full coverage of the dorsum of the foot</td>
</tr>
<tr>
<td>Sharp bone/plastic</td>
<td>Infection</td>
<td>• Do not eat, drink or smoke in the Dissecting Room</td>
</tr>
<tr>
<td>Biological</td>
<td>Fungi, bacteria</td>
<td>• Do not place anything (e.g. pens, pencils) into your mouth</td>
</tr>
<tr>
<td>Chemical</td>
<td>Formaldehyde</td>
<td>• Use disposable gloves when handling wet specimens and do not cross-contaminate models or bones with wet specimens</td>
</tr>
<tr>
<td></td>
<td>Methanol</td>
<td>• Always wash hands with liquid soap and dry thoroughly with disposable paper towel before leaving</td>
</tr>
<tr>
<td></td>
<td>2-phenoxylethanol</td>
<td>• Low concentrations of chemicals used</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Chemicals used in well ventilated area</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Safety Data Sheets for chemicals available in the laboratory</td>
</tr>
</tbody>
</table>

Personal Protective Equipment required

- Closed in Footwear
- Lab. Coat
- Gloves

Emergency Procedures

In the event of an alarm sounding, stop the practical class and wait for confirmation to evacuate from demonstrators. Then wash your hands and pack up your bags. Follow the instructions of the demonstrators regarding exits and assembly points.

Clean up and waste disposal

1. Cover wet specimens with the towels provided. Make sure that towels do not hang over the edge of the table, because this allows fluid to drip onto the floor. Fluids on the floor are a major safety hazard and should be reported to staff immediately.
2. Replace stools under the tables in your cubicle.
3. Remove your gloves and dispose in the biowaste bins provided.
4. Wash your hands and instruments thoroughly with the soap provided and dry your hands with the paper towel.
5. Remove your laboratory coat when you leave the dissecting room.

Ethics Approval
This type of practical has been previously considered and approved by the UNSW Human Research Ethics Advisory Panel (HREC09372).

Declaration
I have read and understand the safety requirements for this practical class and I will observe these requirements.

Signature:...Date:.........................

Date for review: 1/2/2013
Hazard	Risks	Controls
Electrical | Check electrical equipment in good condition before use. All portable electrical equipment tested and tagged.

Workstation set-up

- Top of monitor at eye-height
- Monitor arm-distance away
- Elbow at 90° angle
- Adjust seat back for lumbar support

Personal Protective Equipment
Not necessary in these practicals.

Emergency Procedures
In the event of an alarm, follow the instructions of the demonstrator. The initial sound is advising you to prepare for evacuation and during this time start packing up your things. The second sound gives instruction to leave. The Wallace Wurth assembly point is the lawn in front of the Chancellery. In the event of an injury, inform the demonstrator. First aiders and contact details are on display by the lifts. There is a first aid kit in the laboratory and the Wallace Wurth security office.
Clean up and waste disposal
No apparatus or chemicals used in these practicals.

Declaration
I have read and understand the safety requirements for these practical classes and I will observe these requirements.

Signature:..Date:............... Student Number:..........................
Class Schedule

<table>
<thead>
<tr>
<th>Week</th>
<th>Date</th>
<th>Time</th>
<th>Venue</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4-10 Mar</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tues, 5 Mar</td>
<td>11-1pm/2-4pm</td>
<td>WW, M101</td>
<td>No lab</td>
</tr>
<tr>
<td></td>
<td>Wed, 6 Mar</td>
<td>3-5pm</td>
<td>Biomed A</td>
<td>Shoulder girdle and joints</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pectoral and scapular regions</td>
</tr>
<tr>
<td></td>
<td>Thurs, 7 Mar</td>
<td>1-2pm</td>
<td>LG03</td>
<td>Lecture: Axial skeleton</td>
</tr>
<tr>
<td>2</td>
<td>11-17 Mar</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tues, 12 Mar</td>
<td>11-1pm/2-4pm</td>
<td>WW, M101</td>
<td>Lab1: Pectoral girdle and shoulder</td>
</tr>
<tr>
<td></td>
<td>Wed, 13 Mar</td>
<td>3-5pm</td>
<td>Biomed A</td>
<td>Axilla and brachial plexus</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Arm and elbow joints</td>
</tr>
<tr>
<td></td>
<td>Thurs, 14 Mar</td>
<td>1-2pm</td>
<td>G2-4</td>
<td>Tutorial: Axial skeleton I</td>
</tr>
<tr>
<td>3</td>
<td>18-24 Mar</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tues, 19 Mar</td>
<td>11-1pm/2-4pm</td>
<td>WW, M101</td>
<td>Lab2: Arm and elbow</td>
</tr>
<tr>
<td></td>
<td>Wed, 20 Mar</td>
<td>3-5pm</td>
<td>Biomed A</td>
<td>Forearm I</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Forearm II</td>
</tr>
<tr>
<td></td>
<td>Thurs, 21 Mar</td>
<td>1-2pm</td>
<td>G2-4</td>
<td>Tutorial: Axial skeleton II</td>
</tr>
<tr>
<td>4</td>
<td>25-31 Mar</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tues, 26 Mar</td>
<td>11-1pm/2-4pm</td>
<td>WW, M101</td>
<td>Lab3: Forearm</td>
</tr>
<tr>
<td></td>
<td>Wed, 27 Mar</td>
<td>3-5pm</td>
<td>Biomed A</td>
<td>Wrist joint and bones of the hand</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Muscles of the hand</td>
</tr>
<tr>
<td></td>
<td>Thurs, 28 Mar</td>
<td>1-2pm</td>
<td>LG03/G2-4</td>
<td>Tutorial - upper limb I</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1<sup>st</sup> – 7<sup>th</sup> April-2013: MID-SESSION BREAK</td>
</tr>
<tr>
<td>5</td>
<td>8-14 Apr</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tues, 9 Apr</td>
<td>11-1pm/2-4pm</td>
<td>WW, M101</td>
<td>Lab4: Wrist and hand</td>
</tr>
<tr>
<td></td>
<td>Wed, 10 Apr</td>
<td>3-5pm</td>
<td>Biomed A</td>
<td>Blood supply to the upper limb</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Nerve lesions of the upper limb</td>
</tr>
<tr>
<td></td>
<td>Thurs, 11 Apr</td>
<td>1-2pm</td>
<td>LG03</td>
<td>Lecture: Muscles of the trunk</td>
</tr>
<tr>
<td>6</td>
<td>15-21 Apr</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tues, 16 Apr</td>
<td>11-1pm/2-4pm</td>
<td>WW, M101</td>
<td>Lab5: Nerves and vessels of the upper limb & revision</td>
</tr>
<tr>
<td></td>
<td>Wed, 17 Apr</td>
<td>3-5pm</td>
<td>WW, M101</td>
<td>SPOT 1</td>
</tr>
<tr>
<td></td>
<td>Thurs, 18 Apr</td>
<td>1-2pm</td>
<td>LG03</td>
<td>Lecture: Muscles of the back</td>
</tr>
<tr>
<td>Week</td>
<td>Date</td>
<td>Time</td>
<td>Location</td>
<td>Content</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>------</td>
<td>----------</td>
<td>---------</td>
</tr>
<tr>
<td>7</td>
<td>22-28 Apr</td>
<td>Tues, 23 Apr</td>
<td>11-1pm/2-4pm</td>
<td>WW, M101</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wed, 24 Apr</td>
<td>3-5pm</td>
<td>Biomed A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Thurs, 25 Apr</td>
<td>1-2pm</td>
<td>LG03/G2-4</td>
</tr>
<tr>
<td>8</td>
<td>29 Apr-5 May</td>
<td>Tues, 30 Apr</td>
<td>11-1pm/2-4pm</td>
<td>WW, M101</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wed, 1 May</td>
<td>3-5pm</td>
<td>Biomed A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Thurs, 2 May</td>
<td>1-2pm</td>
<td>WW, M101</td>
</tr>
<tr>
<td>9</td>
<td>6-12 May</td>
<td>Tues, 7 May</td>
<td>11-1pm/2-4pm</td>
<td>WW, M101</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wed, 8 May</td>
<td>3-5pm</td>
<td>Biomed A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Thurs, 9 May</td>
<td>1-2pm</td>
<td>LG03/G2-4</td>
</tr>
<tr>
<td>10</td>
<td>13-19 May</td>
<td>Tues, 14 May</td>
<td>11-1pm/2-4pm</td>
<td>WW, M101</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wed, 15 May</td>
<td>3-5pm</td>
<td>Biomed A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Thurs, 16 May</td>
<td>1-2pm</td>
<td>LG03/G2-4</td>
</tr>
<tr>
<td>11</td>
<td>20-26 May</td>
<td>Tues, 21 May</td>
<td>11-1pm/2-4pm</td>
<td>WW, M101</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wed, 22 May</td>
<td>3-5pm</td>
<td>Biomed A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Thurs, 23 May</td>
<td>1-2pm</td>
<td>LG03/G2-4</td>
</tr>
<tr>
<td>12</td>
<td>27 May-2 Jun</td>
<td>Tues, 28 May</td>
<td>11-1pm/2-4pm</td>
<td>WW, M101</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wed, 29 May</td>
<td>3-5pm</td>
<td>Biomed A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Thurs, 30 May</td>
<td>1-2pm</td>
<td>WW, M101</td>
</tr>
<tr>
<td>13</td>
<td>3-9 Jun</td>
<td>Tues, 4 June</td>
<td>11-1pm/2-4pm</td>
<td>WW, M101</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Wed, 5 June</td>
<td>3-5pm</td>
<td>WW, M101</td>
</tr>
</tbody>
</table>