Objectives

Describe how human kidneys regulate salt and water balance

Outline the actions of antidiuretic hormone (ADH) and aldosterone

Consider genetic disorders influencing ADH and aldosterone activity

Appreciate how understanding the basis of rare disorders furthers our understanding of normal function
1. Hypothalamus detects too little water in blood.

5. Blood water level returns to normal.
Filter 1600L of blood/day
180L of ultrafiltrate
1.5 L of urine
1. Hypothalamus detects too little water in blood
2. Pituitary gland releases ADH
3. Kidneys maintain blood water level
4. So less water is lost in urine (urine more concentrated)
5. Blood water level returns to normal
ADH (Vasopressin, AVP) stimulates synthesis of aquaporin-2 (AQP) water channel proteins and their transport to the apical surface of collecting duct principal cells.
Antidiuretic Hormone

Synthesised in hypothalamus, stored in posterior pituitary
Stimulated by
 \(\uparrow \) plasma osmolality (threshold 275 - 290 mosm/L)
 \(\downarrow \) blood volume, \(\downarrow \) blood pressure

Leads to water reabsorption in kidneys
 Primary site of action is collecting tubule
 Binds to basal V2 receptor
 \(\rightarrow \) aquaporin 2 (AQP2) inserted into apical membrane
 Withdrawal of AVP
 \(\rightarrow \) endocytosis of AQP2
"Darn it! Mitosis! And just before a big date!"
Sodium Reabsorption

©2010 by American Physiological Society
Renin Release

1. Decrease in blood pressure detected by baroreceptors (pressure-sensitive cells).
2. Decrease in sodium chloride levels in the ultrafiltrate of the nephron.
3. Sympathetic nervous system activity
Distal convoluted tubule

Collecting Duct
Na

3Na

2K

Nucleus

MR

Aldosterone

Na-K-ATPase

K

(ROMK)

(ENaC)

Lumen

Interstitium

+
Aldosterone

Released from adrenal medulla in response to

- Angiotensin II
- Hyperkalaemia

Actions

Na retention

- Immediate effect to increase apical membrane permeability to sodium
- Also enhanced gene transcription & de novo synthesis of Na-K-ATPase

K excretion
"Oh, come on, Alan - think. Use your nucleus!"
Nephrogenic Diabetes Insipidus

Prevalence 1-2/1 000 000.
Failure of ADH response
Polyuria can be 10 L per day
X-linked recessive caused by mutations in the gene coding for the V2 receptor
Liddle’s syndrome

High blood pressure and low potassium
Autosomal dominant, rare
Caused by mutations in genes that control degradation of sodium channel (ENaC)
ENaC remain ‘open’ at the cell surface leads to reabsorption of sodium followed by water which leads to hypertension.
ADRENAL CORTICAL HORMONE SYNTHESIS

Cholesterol
- 20,22-desmolase (CYP11A1)
- 17α-hydroxylase (CYP17)

Pregnenolone
- 17α-hydroxyprogrenolone
- 17,20-desmolase (CYP17)

17-hydroxypregnenolone
- 3β-hydroxysteroid dehydrogenase (3β-HSDII)

Progesterone
- 21-hydroxylase (CYP21A2)

11-deoxycorticosterone
- 11β-hydroxylase (CYP11B1)
- 18-hydroxylase (CYP11B2)

Corticosterone
- 18-oxidase (CYP11B2)

11-deoxycortisol
- 11β-hydroxylase (CYP11B1)

Cortisol
- 11β-hydroxysteroid dehydrogenase

Aldosterone

Glucocorticoids

Dehydroepiandrosterone
- 16α-hydroxylase

16α-hydroxydehydroepiandrosterone

Androstenedione
- 3β-hydroxysteroid dehydrogenase (3β-HSDII)
- aromatase

Androgens

Testosterone
- 5α-reductase

Dihydrotestosterone
- 17β-hydroxysteroid dehydrogenase

Estradiol
- aromatase

Estrone
- aromatase

Estriol
ADRENAL CORTEX HORMONE SYNTHESIS

Cholesterol
 20,22-desmolase (CYP11A1)
 17α-hydroxylase (CYP17)

Pregnenolone
 17,20-desmolase (CYP17)

17-hydroxyprogrenolone
 3β-hydroxysteroid dehydrogenase (3β-HSDII)

Progestrone
 21-hydroxylase (CYP21A2)

11-deoxycorticosterone
 11β-hydroxylase (CYP11B1)

11-deoxycortisol
 18-hydroxylase (CYP11B2)

Cortisol
 11β-hydroxylase (CYP11B1)

Corticosterone
 18-oxidase (CYP11B2)

18-hydroxycorticosterone

Aldosterone

17α-hydroxyprogesterone
 21-hydroxylase (CYP21A2)

Dehydroepiandrosterone
 16α-hydroxylase

16-OH-dehydroepiandrosterone

Androstenedione
 3β-hydroxysteroid dehydrogenase (3β-HSDII)

Testosterone
 17β-hydroxysteroid dehydrogenase

5α-reductase

Dihydrotestosterone

Estrone
 aromatase

Estradiol
 aromatase

Estriol

Estrogen

Androgens

5α-reductase
21 Hydroxylase deficiency

Salt-losing congenital adrenal hyperplasia (CAH)
Autosomal recessive 1 in 16,000
Low levels of cortisol and aldosterone but high levels of androgen.
Poor feeding, weight-loss and vomiting
Low blood pressure, low blood sugar, low sodium, high potassium
Virilisation in females
Summary

99% of filtered water is reabsorbed in kidneys
most by passive diffusion along with sodium
collecting ducts are impermeable to water except when ADH present
ADH secreted by pituitary in response to increased plasma osmolality

90+% of sodium is reabsorbed
different mechanisms in different parts of the tubules
aldosterone acts at distal nephron to reabsorb sodium
aldosterone secreted by adrenal glands when blood pressure falls
Cheap cilia toupees